ترغب بنشر مسار تعليمي؟ اضغط هنا

We study collective excitations of cold (2+1)-dimensional fundamental matter living on a defect of the four-dimensional N=4 super Yang-Mills theory in the Higgs branch. This system is realized holographically as a D3-D5 brane intersection, in which t he D5-brane is treated as a probe with a non-zero gauge flux across the internal part of its worldvolume. We study the holographic zero sound mode in the collisionless regime at low temperature and find a simple analytic result for its dispersion relation. We also find the diffusion constant of the system in the hydrodynamic regime at higher temperature. In both cases we study the dependence on the flux parameter which determines the amount of Higgs symmetry breaking. We also discuss the anyonization of this construction.
We study the addition of flavor to the gravity dual of N=4 three-dimensional gauge theories obtained by wrapping $N_c$ D4-branes on a two-cycle of a non-compact Calabi-Yau two-fold. In this setup the flavor is introduced by adding another set of D4-b ranes that are extended along the non-compact directions of the Calabi-Yau which are normal to the cycle which the color branes wrap. The analysis is performed both in the quenched and unquenched approximations. In this latter case we compute the backreacted metric and we show that it reproduces the running of the gauge coupling. The meson spectrum and the behavior of Wilson loops are also discussed and the holographic realization of the Higgs branch is analyzed. Other aspects of this system studied are the entanglement entropy and the non-relativistic version of our backgrounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا