ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to try and understand its origins, we present high-quality long-slit spectral observations of the counter-rotating stellar discs in the strange S0 galaxy NGC 4550. We kinematically decompose the spectra into two counter-rotating stellar comp onents (plus a gaseous component), in order to study both their kinematics and their populations. The derived kinematics largely confirm what was known previously about the stellar discs, but trace them to larger radii with smaller errors; the fitted gaseous component allows us to trace the hydrogen emission lines for the first time, which are found to follow the same rather strange kinematics previously seen in the [OIII] line. Analysis of the populations of the two separate stellar components shows that the secondary disc has a significantly younger mean age than the primary disc, consistent with later star formation from the associated gaseous material. In addition, the secondary disc is somewhat brighter, also consistent with such additional star formation. However, these measurements cannot be self-consistently modelled by a scenario in which extra stars have been added to initially-identical counter-rotating stellar discs, which rules out Evans & Colletts (1994) elegant separatrix-crossing model for the formation of such massive counter-rotating discs from a single galaxy, leaving some form of unusual gas accretion history as the most likely formation mechanism.
96 - David T. Maltby 2011
We present an analysis of V-band radial surface brightness profiles for spiral galaxies from the field and cluster environments using Hubble Space Telescope/Advanced Camera for Surveys imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). We use a large sample of ~330 face-on to intermediately inclined spiral galaxies and assess the effect of the galaxy environment on the azimuthally averaged radial surface brightness mu profiles for each galaxy in the outer stellar disc (24 < mu < 26.5 mag per sq arcsec). For galaxies with a purely exponential outer disc (~50 per cent), we determine the significance of an environmental dependence on the outer disc scalelength h_out. For galaxies with a broken exponential in their outer disc, either down-bending (truncation, ~10 per cent) or up-bending (anti-truncation, ~40 per cent), we measure the strength T (outer-to-inner scalelength ratio, log_10(h_out/h_in) of the mu breaks and determine the significance of an environmental dependence on break strength T. Surprisingly, we find no evidence to suggest any such environmental dependence on either outer disc scalelength h_out or break strength T, implying that the galaxy environment is not affecting the stellar distribution in the outer stellar disc. We also find that for galaxies with small effective radii (r_e < 3 kpc) there is a lack of outer disc truncations in both the field and cluster environments. Our results suggest that the stellar distribution in the outer disc of spiral galaxies is not significantly affected by the galaxy environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا