ترغب بنشر مسار تعليمي؟ اضغط هنا

137 - Tracy E. Clarke 2011
Abell 2256 is a rich, nearby (z=0.0594) galaxy cluster that has significant evidence of merger activity. We present new radio and X-ray observations of this system. The low-frequency radio images trace the diffuse synchrotron emission of the Mpc-scal e radio halo and relics as well as a number of recently discovered, more compact, steep spectrum sources. The spectral index across the relics steepens from the north-west toward the south-east. Analysis of the spectral index gradients between low and and high-frequencies shows spectral differences away from the north-west relic edge such that the low-frequency index is significantly flatter than the high frequency spectral index near the cluster core. This trend would be consistent with an outgoing merger shock as the origin of the relic emission. New X-ray data from XMM-Newton reveal interesting structures in the intracluster medium pressure, entropy and temperature maps. The pressure maps show an overall low pressure core co-incident with the radio halo emission, while the temperature maps reveal multiple regions of cool emission within the central regions of Abell 2256. The two cold fronts in Abell 2256 both appear to have motion in similar directions.
The Coma cluster of galaxies hosts the brightest radio halo known and has therefore been the target of numerous searches for associated inverse Compton (IC) emission, particularly at hard X-ray energies where the IC signal must eventually dominate ov er thermal emission. The most recent search with the Suzaku Hard X-ray Detector (HXD) failed to confirm previous IC detections with RXTE and BeppoSAX, instead setting an upper limit 2.5 times below their nonthermal flux. However, this discrepancy can be resolved if the IC emission is very extended, beyond the scale of the cluster radio halo. Using reconstructed sky images from the 58-month Swift BAT all sky survey, the feasibility of such a solution is investigated. Building on Renaud et al., we test and implement a method for extracting the fluxes of extended sources, assuming specified spatial distributions. BAT spectra are jointly fit with an XMM-Newton EPIC-pn spectrum derived from mosaic observations. We find no evidence for large-scale IC emission at the level expected from the previously detected nonthermal fluxes. For all nonthermal spatial distributions considered, which span the gamut of physically reasonable IC models, we determine upper limits for which the largest (most conservative) limit is <4.2x10^{-12} erg/s/cm^2 (20-80 keV), which corresponds to a lower limit on the magnetic field B>0.2uG. A nominal flux upper limit of <2.7x10^{-12} erg/s/cm^2, with corresponding B>0.25uG, is derived for the most probable IC distribution given the size of the radio halo and likely magnetic field radial profile.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا