ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum repeaters based on atomic ensemble quantum memories are promising candidates for achieving scalable distribution of entanglement over long distances. Recently, important experimental progress has been made towards their implementation. Howeve r, the entanglement rates and scalability of current approaches are limited by relatively low retrieval and single-photon detector efficiencies. We propose a scheme, which makes use of fluorescent detection of stored excitations to significantly increase the efficiency of connection and hence the rate. Practical performance and possible experimental realizations of the new protocol are discussed.
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled by the nonlinear atomic response, under the conditions of Electromagnetically Induced Transparency, to a control beam with intensity vanishing at a certain location. Practical performance of this technique and its potential applications to quantum information science with cold atoms, ions, and solid-state qubits are discussed.
Strongly correlated quantum systems can exhibit exotic behavior called topological order which is characterized by non-local correlations that depend on the system topology. Such systems can exhibit remarkable phenomena such as quasi-particles with a nyonic statistics and have been proposed as candidates for naturally fault-tolerant quantum computation. Despite these remarkable properties, anyons have never been observed in nature directly. Here we describe how to unambiguously detect and characterize such states in recently proposed spin lattice realizations using ultra-cold atoms or molecules trapped in an optical lattice. We propose an experimentally feasible technique to access non-local degrees of freedom by performing global operations on trapped spins mediated by an optical cavity mode. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit. Furthermore, our technique can be used to probe statistics and dynamics of anyonic excitations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا