ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither exten ds to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.
We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets.
140 - Alexey Glazyrin 2009
In this paper we prove a new asymptotic lower bound for the minimal number of simplices in simplicial dissections of $n$-dimensional cubes. In particular we show that the number of simplices in dissections of $n$-cubes without additional vertices is at least $(n+1)^{frac {n-1} 2}$.
Consider a polygon P and all neighboring circles (circles going through three consecutive vertices of P). We say that a neighboring circle is extremal if it is empty (no vertices of P inside) or full (no vertices of P outside). It is well known that for any convex polygon there exist at least two empty and at least two full circles, i.e. at least four extremal circles. In 1990 Schatteman considered a generalization of this theorem for convex polytopes in d-dimensional Euclidean space. Namely, he claimed that there exist at least 2d extremal neighboring spheres. In this paper, we show that there are certain gaps in Schattemans proof, which is based on the Bruggesser-Mani shelling method. We show that using this method it is possible to prove that there are at least d+1 extremal neighboring spheres. However, the existence problem of 2d extremal neighboring spheres is still open.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا