ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmission is a weak measureme nt of the collective qubit inversion. As an example of this result, we focus on the case of two qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is realized without relying on an entangling Hamiltonian. We show that, for {em current} experimental values of both the decoherence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage of the fact that one of the Bell states is decoherence-free under Purcell decay.
Superconducting electrical circuits can be used to study the physics of cavity quantum electrodynamics (QED) in new regimes, therefore realizing circuit QED. For quantum information processing and quantum optics, an interesting regime of circuit QED is the dispersive regime, where the detuning between the qubit transition frequency and the resonator frequency is much larger than the interaction strength. In this paper, we investigate how non-linear corrections to the dispersive regime affect the measurement process. We find that in the presence of pure qubit dephasing, photon population of the resonator used for the measurement of the qubit act as an effective heat bath, inducing incoherent relaxation and excitation of the qubit. Measurement thus induces both dephasing and mixing of the qubit, something that can reduce the quantum non-demolition aspect of the readout. Using quantum trajectory theory, we show that this heat bath can induce quantum jumps in the qubit state and reduce the achievable signal-to-noise ratio of a homodyne measurement of the voltage.
Systems in the dispersive regime of cavity quantum electrodynamics (QED) are approaching the limits of validity of the dispersive approximation. We present a model which takes into account nonlinear corrections to the dressing of the atom by the fiel d. We find that in the presence of pure dephasing, photons populating the cavity act as a heat bath on the atom, inducing incoherent relaxation and excitation. These effects are shown to reduce the achievable signal-to-noise ratio in cavity QED realizations where the atom is measured indirectly through cavity transmission and in particular in circuit QED.
From a physicists standpoint, the most interesting part of quantum computing research may well be the possibility to probe the boundary between the quantum and the classical worlds. The more macroscopic are the structures involved, the better. So far , the most macroscopic qubit prototypes that have been studied in the laboratory are certain kinds of superconducting qubits. To get a feeling for how macroscopic these systems can be, the states of flux qubits which are brought in a quantum superposition corresponds to currents composed of as much as 10^5-10^6 electrons flowing in opposite directions in a superconducting loop. Non-superconducting qubits realized so far are all essentially microscopic.
We present a theoretical study of a superconducting charge qubit dispersively coupled to a transmission line resonator. Starting from a master equation description of this coupled system and using a polaron transformation, we obtain an exact effectiv e master equation for the qubit. We then use quantum trajectory theory to investigate the measurement of the qubit by continuous homodyne measurement of the resonator out-field. Using the same porlaron transformation, a stochastic master equation for the conditional state of the qubit is obtained. From this result, various definitions of the measurement time are studied. Furthermore, we find that in the limit of strong homodyne measurement, typical quantum trajectories for the qubit exhibit a crossover from diffusive to jump-like behavior. Finally, in the presence of Rabi drive on the qubit, the qubit dynamics is shown to exhibit quantum Zeno behavior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا