ترغب بنشر مسار تعليمي؟ اضغط هنا

We study discrete-time simulation schemes for stochastic Volterra equations, namely the Euler and Milstein schemes, and the corresponding Multi-Level Monte-Carlo method. By using and adapting some results from Zhang [22], together with the Garsia-Rod emich-Rumsey lemma, we obtain the convergence rates of the Euler scheme and Milstein scheme under the supremum norm. We then apply these schemes to approximate the expectation of functionals of such Volterra equations by the (Multi-Level) Monte-Carlo method, and compute their complexity.
In this paper we solve real-valued rough differential equations (RDEs) reflected on an irregular boundary. The solution $Y$ is constructed as the limit of a sequence $(Y^n)_{ninmathbb{N}}$ of solutions to RDEs with unbounded drifts $(psi_n)_{ninmathb b{N}}$. The penalisation $psi_n$ increases with $n$. Along the way, we thus also provide an existence theorem and a Doss-Sussmann representation for RDEs with a drift growing at most linearly. In addition, a speed of convergence of the sequence of penalised paths to the reflected solution is obtained. We finally use the penalisation method to prove that the law at time $t>0$ of some reflected Gaussian RDE is absolutely contiuous with respect to the Lebesgue measure.
This paper examines the Root solution of the Skorohod embedding problem given full marginals on some compact time interval. Our results are obtained by limiting arguments based on finitely-many marginals Root solution of Cox, Obloj and Touzi. Our mai n result provides a characterization of the corresponding potential function by means of a convenient parabolic PDE.
116 - Fabien Panloup 2018
The convergence to the stationary regime is studied for Stochastic Differential Equations driven by an additive Gaussian noise and evolving in a semi-contractive environment, i.e. when the drift is only contractive out of a compact set but does not h ave repulsive regions. In this setting, we develop a synchronous coupling strategy to obtain sub-exponential bounds on the rate of convergence to equilibrium in Wasserstein distance. Then by a coalescent coupling close to terminal time, we derive a similar bound in total variation distance.
We present an innovating sensitivity analysis for stochastic differential equations: We study the sensitivity, when the Hurst parameter~$H$ of the driving fractional Brownian motion tends to the pure Brownian value, of probability distributions of sm ooth functionals of the trajectories of the solutions ${X^H_t}_{tin mathbb{R}_+}$ and of the Laplace transform of the first passage time of $X^H$ at a given threshold. Our technique requires to extend already known Gaussian estimates on the density of $X^H_t$ to estimates with constants which are uniform w.r.t. $t$ in in the whole half-line $R_+-{0}$ and $H$ when $H$ tends to~$tfrac{1}{2}$.
In this paper we develop sensitivity analyses w.r.t. the long-range/memory noise parameter for solutions to stochastic differential equations and the probability distributions of their first passage times at given thresholds. Here we consider the cas e of stochastic differential equations driven by fractional Brownian motions and the sensitivity, when the Hurst parameter~$H$ of the noise tends to the pure Brownian value, of probability distributions of certain functionals of the trajectories of the solutions ${X^H_t}_{tin mathbb{R}_+}$. We first get accurate sensitivity estimates w.r.t. $H$ around the critical Brownian parameter $H=tfrac{1}{2}$ of time marginal probability distributions of $X^H$. We second develop a sensitivity analysis for the Laplace transform of first passage time of $X^H$ at a given threshold. Our technique requires accurate Gaussian estimates on the density of $X^H_t$. The Gaussian estimate we obtain in Section~5 may be of interest by itself.
189 - Alexandre Richard 2015
We are interested in the increment stationarity property for $L^2$-indexed stochastic processes, which is a fairly general concern since many random fields can be interpreted as the restriction of a more generally defined $L^2$-indexed process. We fi rst give a spectral representation theorem in the sense of citet{Ito54}, and see potential applications on random fields, in particular on the $L^2$-indexed extension of the fractional Brownian motion. Then we prove that this latter process is characterized by its increment stationarity and self-similarity properties, as in the one-dimensional case.
91 - Alexandre Richard 2014
We prove a Chung-type law of the iterated logarithm for a multiparameter extension of the fractional Brownian motion which is not increment stationary. This multiparameter fractional Brownian motion behaves very differently at the origin and away fro m the axes, which also appears in the Hausdorff dimension of its range and in the measure of its pointwise Holder exponents. A functional version of this Chung-type law is also provided.
75 - Alexandre Richard 2013
Using structures of Abstract Wiener Spaces, we define a fractional Brownian field indexed by a product space $(0,1/2] times L^2(T,m)$, $(T,m)$ a separable measure space, where the first coordinate corresponds to the Hurst parameter of fractional Brow nian motion. This field encompasses a large class of existing fractional Brownian processes, such as Levy fractional Brownian motions and multiparameter fractional Brownian motions, and provides a setup for new ones. We prove that it has satisfactory incremental variance in both coordinates and derive certain continuity and Holder regularity properties in relation with metric entropy. Also, a sharp estimate of the small ball probabilities is provided, generalizing a result on Levy fractional Brownian motion. Then, we apply these general results to multiparameter and set-indexed processes, proving the existence of processes with prescribed local Holder regularity on general indexing collections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا