ترغب بنشر مسار تعليمي؟ اضغط هنا

290 - Alexandr Savinov 2015
For the past several decades, programmers have been modeling things in the world with trees using hierarchies of classes and object-oriented programming (OOP) languages. In this paper, we describe a novel approach to programming, called concept-orien ted programming (COP), which generalizes classes and inheritance by introducing concepts and inclusion, respectively.
176 - Alexandr Savinov 2010
Object-oriented programming (OOP) is aimed at describing the structure and behaviour of objects by hiding the mechanism of their representation and access in primitive references. In this article we describe an approach, called concept-oriented progr amming (COP), which focuses on modelling references assuming that they also possess application-specific structure and behaviour accounting for a great deal or even most of the overall program complexity. References in COP are completely legalized and get the same status as objects while the functions are distributed among both objects and references. In order to support this design we introduce a new programming construct, called concept, which generalizes conventional classes and concept inclusion relation generalizing class inheritance. The main advantage of COP is that it allows programmers to describe two sides of any program: explicitly used functions of objects and intermediate functionality of references having cross-cutting nature and executed implicitly behind the scenes during object access.
41 - Alexandr Savinov 2007
In the paper a new approach to data representation and manipulation is described, which is called the concept-oriented data model (CODM). It is supposed that items represent data units, which are stored in concepts. A concept is a combination of supe rconcepts, which determine the concepts dimensionality or properties. An item is a combination of superitems taken by one from all the superconcepts. An item stores a combination of references to its superitems. The references implement inclusion relation or attribute-value relation among items. A concept-oriented database is defined by its concept structure called syntax or schema and its item structure called semantics. The model defines formal transformations of syntax and semantics including the canonical semantics where all concepts are merged and the data semantics is represented by one set of items. The concept-oriented data model treats relations as subconcepts where items are instances of the relations. Multi-valued attributes are defined via subconcepts as a view on the database semantics rather than as a built-in mechanism. The model includes concept-oriented query language, which is based on collection manipulations. It also has such mechanisms as aggregation and inference based on semantics propagation through the database schema.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا