ترغب بنشر مسار تعليمي؟ اضغط هنا

During the expansion of a heavy ion collision, the system passes close to the $O(4)$ critical point of QCD, and thus the fluctuations of the order parameter $(sigma, vec{pi})$ are expected to be enhanced. Our goal is to compute how these enhanced flu ctuations modify the transport coefficients of QCD near the pseudo-critical point. We also make a phenomenological estimate for how chiral fluctuations could effect the momentum spectrum of soft pions. We first formulate the appropriate stochastic hydrodynamic equations close to the $O(4)$ critical point. Then, working in mean field, we determine the correlation functions of the stress tensor and the currents which result from this stochastic real time theory, and use these correlation functions to determine the scaling behavior of the transport coefficients. The hydrodynamic theory also describes the propagation of pion waves, fixing the scaling behavior of the dispersion curve of soft pions. We present scaling functions for the shear viscosity and the charge conductivities near the pseudo-critical point, and estimate the absolute magnitude of the critical fluctuations to these parameters and the bulk viscosity. Using the calculated pion dispersion curve, we estimate the expected critical enhancement of soft pion yields, and this estimate provides a plausible explanation for the excess seen in experiment relative to ordinary hydrodynamic computations. Our results motivate further phenomenological and numerical work on the implications of chiral symmetry on real time properties of thermal QCD near the pseudo-critical point.
We analyze the evolution of hydrodynamic fluctuations for QCD matter below $T_c$ in the chiral limit, where the pions (the Goldstone modes) must be treated as additional non-abelian superfluid degrees of freedom, reflecting the broken $SU_L(2) times SU_R(2)$ symmetry of the theory. In the presence of a finite pion mass $m_{pi}$, the hydrodynamic theory is ordinary hydrodynamics at long distances, and superfluid-like at short distances. The presence of the superfluid degrees of freedom then gives specific contributions to the bulk viscosity, the shear viscosity, and diffusion coefficients of the ordinary theory at long distances which we compute. This determines, in some cases, the leading dependence of the transport parameters of QCD on the pion mass. We analyze the predictions of this computation, as the system approaches the $O(4)$ critical point.
We study dynamical friction in interacting relativistic systems with arbitrary mean free paths and medium constituent masses. Our novel framework recovers the known limits of ideal gas and ideal fluid when the mean free path goes to infinity or zero, respectively, and allows for a smooth interpolation between these limits. We find that in an infinite system the drag force can be expressed as a sum of ideal-gas-like and ideal-fluid-like contributions leading to a finite friction even at subsonic velocities. This simple picture receives corrections in any finite system and the corrections become especially significant for a projectile moving at a velocity $v$ close to the speed of sound $vapprox c_s$. These corrections smoothen the ideal fluid discontinuity around the speed of sound and render the drag force a continuous function of velocity. We show that these corrections can be computed to a good approximation within effective theory of viscous fluid dynamics.
We develop a method for obtaining exact time-dependent solutions in Jackiw-Teitelboim gravity coupled to non-conformal matter and study consequences for $NAdS_2$ holography. We study holographic quenches in which we find that the black hole mass incr eases. A semi-holographic model composed of an infrared $NAdS_2$ holographic sector representing the mutual strong interactions of trapped impurities confined at a spatial point is proposed. The holographic sector couples to the position of a displaced impurity acting as a self-consistent boundary source. This effective $0+1-$dimensional description has a total conserved energy. Irrespective of the initial velocity of the particle, the black hole mass initially increases, but after the horizon runs away to infinity in the physical patch, the mass vanishes in the long run. The total energy is completely transferred to the kinetic energy or the self-consistent confining potential energy of the impurity. For initial velocities below a critical value determined by the mutual coupling, the black hole mass changes sign in finite time. Above this critical velocity, the initial condition of the particle can be retrieved from the $SL(2,R)$ invariant exponent that governs the exponential growth of the bulk gravitational $SL(2,R)$ charges at late time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا