ترغب بنشر مسار تعليمي؟ اضغط هنا

The electromagnetic bremsstrahlung spectrum for the dipole which falling by a spiral orbit into the Schwarzschild black hole was found. The characteristic features in this electromagnetic spectrum can be used for determine of the black hole mass by t he new way. This new way (if implemented) provides higher accuracy in determining of the black hole mass. Also these features in the spectrum can be used for determine of the certain characteristics in the black hole magnetosphere or in the accretion disk characteristics around the black hole. It is also shown that the asymptotic behavior of this spectrum (at high frequencies) is practically independent from the impact parameter of the falling dipole.
The analytic solution of the general relativity equations for spherically symmetric wormholes are given. We investigate the special case of a traversable wormhole i.e., one allowing the signal to pass through it. The energy-momentum tensor of wormhol e matter is represented as a superposition of a spherically symmetric magnetic field and dust matter with negative matter density. The dynamics of the model are investigated. We discuss both the solution of the equation with a Lambda-term and without it. Superposing enough dust matter, a magnetic field, and a Lambda-term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormholes connected spherical universes. Corresponding solution can be static and dynamic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا