ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital memory is defined by two stable valencies that can be electrically switched and read-out. To explore the influence of an electric field on orbital memory, we studied the distance-dependent influence of an atomic Cu donor on the state favorabi lity of an individual Co atom on black phosphorus. Using low temperature scanning tunneling microscopy/spectroscopy, we characterized the electronic properties of individual Cu donors, corroborating this behavior with ab initio calculations based on density functional theory. We studied the influence of an individual donor on the charging energy and stochastic behavior of an individual Co atom. We found a strong impact on the state favorability in the stochastic limit. These findings provide quantitative information about the influence of local electric fields on atomic orbital memory.
First principles approaches have been successful in solving many-body Hamiltonians for real materials to an extent when correlations are weak or moderate. As the electronic correlations become stronger often embedding methods based on first principle s approaches are used to better treat the correlations by solving a suitably chosen many-body Hamiltonian with a higher level theory. Such combined methods are often referred to as second principles approaches. At such level of the theory the self energy, i.e. the functional that embodies the stronger electronic correlations, is either a function of energy or momentum or both. The success of such theories is commonly measured by the quality of the self energy functional. However, self-consistency in the self-energy should, in principle, also change the real space charge distribution in a correlated material and be able to modify the electronic eigenfunctions, which is often undermined in second principles approaches. Here we study the impact of charge self-consistency within two example cases: TiSe$_{2}$, a three-dimensional charge-density-wave candidate material, and CrBr$_{3}$, a two-dimensional ferromagnet, and show how real space charge re-distribution due to correlation effects taken into account within a first principles Greens function based many-body perturbative approach is key in driving qualitative changes to the final electronic structure of these materials.
A single magnetic atom on a surface epitomizes the scaling limit for magnetic information storage. Indeed, recent work has shown that individual atomic spins can exhibit magnetic remanence and be read out with spin-based methods, demonstrating the fu ndamental requirements for magnetic memory. However, atomic spin memory has been only realized on thin insulating surfaces to date, removing potential tunability via electronic gating or distance-dependent exchange-driven magnetic coupling. Here, we show a novel mechanism for single-atom magnetic information storage based on bistability in the orbital population, or so-called valency, of an individual Co atom on semiconducting black phosphorus (BP). Distance-dependent screening from the BP surface stabilizes the two distinct valencies and enables us to electronically manipulate the relative orbital population, total magnetic moment and spatial charge density of an individual magnetic atom without a spin-dependent readout mechanism. Furthermore, we show that the strongly anisotropic wavefunction can be used to locally tailor the switching dynamics between the two valencies. This orbital memory derives stability from the energetic barrier to atomic relaxation and demonstrates the potential for high-temperature single-atom information storage.
Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the inter faces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS2 or WS2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe2 and WSe2, our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN: interfaces which are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two dimensional (2D) crystal NbSe2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glove-box transfer significantly improves the quality of interfaces for WSe2 compared to processing in air.
Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of th e surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا