ترغب بنشر مسار تعليمي؟ اضغط هنا

Layered non-centrosymmetric bismuth tellurohalides are being examined as candidates for topological insulators. Pressure is believed to be essential for inducing and tuning topological order in these systems. Through electrical transport and Raman sc attering measurements, we find superconductivity in two high-pressure phases of BiTeCl with the different normal state features, carrier characteristics, and upper critical field behaviors. Superconductivity emerges when the resistivity maximum or charge density wave is suppressed by the applied pressure and then persists till the highest pressure of 51 GPa measured. The huge enhancement of the resistivity with three magnitude of orders indicates the possible achievement of the topological order in the dense insulating phase. These findings not only enrich the superconducting family from topological insulators but also pave the road on the search of topological superconductivity in bismuth tellurohalides.
Sodium chloride (NaCl), or rocksalt, is well characterized at ambient pressure. Due to the large electronegativity difference between Na and Cl atoms, it has highly ionic chemical bonding, with stoichiometry 1:1 dictated by charge balance, and B1-typ e crystal structure. Here, by combining theoretical predictions and diamond anvil cell experiments we show that new materials with different stoichiometries emerge at pressure as low as 20 GPa. Compounds such us Na3Cl, Na2Cl, Na3Cl2, NaCl3 and NaCl7 are theoretically stable and have unusual bonding and electronic properties. To test this prediction, at 55-80 GPa we synthesized cubic and orthorhombic NaCl3 at 55-70 GPa and 2D-metallic tetragonal Na3Cl. This proves that novel compounds, violating chemical intuition, can be thermodynamically stable even in simplest systems at non-ambient conditions.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable comp ounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.
At ambient pressure, sodium, chlorine, and their only known compound NaCl, have well-understood crystal structures and chemical bonding. Sodium is a nearly-free-electron metal with the bcc structure. Chlorine is a molecular crystal, consisting of Cl2 molecules. Sodium chloride, due to the large electronegativity difference between Na and Cl atoms, has highly ionic chemical bonding, with stoichiometry 1:1 dictated by charge balance, and rocksalt (B1-type) crystal structure in accordance with Paulings rules. Up to now, Na-Cl was thought to be an ultimately simple textbook system. Here, we show that under pressure the stability of compounds in the Na-Cl system changes and new materials with different stoichiometries emerge at pressure as low as 25 GPa. In addition to NaCl, our theoretical calculations predict the stability of Na3Cl, Na2Cl, Na3Cl2, NaCl3 and NaCl7 compounds with unusual bonding and electronic properties. The bandgap is closed for the majority of these materials. Guided by these predictions, we have synthesized cubic NaCl3 at 55-60 GPa in the laser-heated diamond anvil cell at temperatures above 2000 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا