ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the observation and measurement of the transfer of transverse angular momentum to birefringent particles several wavelengths in size. A trapped birefringent particle is much larger than the nano-particles systems for which transverse ang ular momentum was previously investigated. The larger birefringent particle interacts more strongly with both the trapping beam and fluid surrounding it. This technique could be used to transfer transverse angular momentum for studies of diverse micro-systems. Thus, it can be used for investigation of the dynamics of complex fluids in 3D as well as for shear on cell mono-layers. The trapping of such a particle with highly focused light is complex and can lead to the emergence of effects such as spin--orbit coupling. We estimate the transfer of spin angular momentum using Stokes measurements. We outline the physics behind the construction of the beam used to control the particles, perform quantitative measurement of transverse spin angular momentum transfer, as well as demonstrate the generation of fluid flow around multiple rotation axes.
All light has structure, but only recently it has become possible to construct highly controllable and precise potentials so that most laboratories can harness light for their specific applications. In this chapter, we review the emerging techniques for high-resolution and configurable optical trapping of ultracold atoms. We focus on optical deflectors and spatial light modulators in the Fourier and direct imaging configurations. These optical techniques have enabled significant progress in studies of superfluid dynamics, single-atom trapping, and underlie the emerging field of atomtronics. The chapter is intended as a complete guide to the experimentalist for understanding, selecting, and implementing the most appropriate optical trapping technology for a given application. After introducing the basic theory of optical trapping and image formation, we describe each of the above technologies in detail, providing a guide to the fundamental operation of optical deflectors, digital micromirror devices, and liquid crystal spatial light modulators. We also describe the capabilities of these technologies for manipulation of trapped ultracold atoms, where the potential is dynamically modified to enable experiments, and where time-averaged potentials can realise more complex traps. The key considerations when implementing time-averaged traps are described.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا