ترغب بنشر مسار تعليمي؟ اضغط هنا

Sky coverage is one of the most important pieces of information about astronomical observations. We discuss possible representations, and present algorithms to create and manipulate shapes consisting of generalized spherical polygons with arbitrary c omplexity and size on the celestial sphere. This shape specification integrates well with our Hierarchical Triangular Mesh indexing toolbox, whose performance and capabilities are enhanced by the advanced features presented here. Our portable implementation of the relevant spherical geometry routines comes with wrapper functions for database queries, which are currently being used within several scientific catalog archives including the Sloan Digital Sky Survey, the Galaxy Evolution Explorer and the Hubble Legacy Archive projects as well as the Footprint Service of the Virtual Observatory.
Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work we inv estigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly-inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the restframe wavelengths 3700-8000 angstrom, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the HII region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the HII region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا