ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the Bose-Hubbard Hamiltonian to study quantum fluctuations in canonical equilibrium ensembles of bosonic Josephson junctions at relatively high temperatures, comparing the results for finite particle numbers to the classical limit that is atta ined as $N$ approaches infinity. We consider both attractive and repulsive atom-atom interactions, with especial focus on the behavior near the T=0 quantum phase transition that occurs, for large enough $N$, when attractive interactions surpass a critical level. Differences between Bose-Hubbard results for small $N$ and those of the classical limit are quite small even when $N sim 100$, with deviations from the limit diminishing as 1/N.
Bosonic Josephson junctions can be realized by confining ultracold gases of bosons in multi-well traps, and studied theoretically with the $M$-site Bose-Hubbard model. We show that canonical equilibrium states of the $M$-site Bose-Hubbard model may b e approximated by mixtures of coherent states, provided the number of atoms is large and the total energy is comparable to $k_BT$. Using this approximation, we study thermal fluctuations in bosonic Josephson junctions in the mean field regime. Statistical estimates of the fluctuations of relative phase and number, obtained by averaging over many replicates of an experiment, can be used to estimate the temperature and the tunneling parameter, or to test whether the experimental procedure is effectively sampling from a canonical thermal equilibrium ensemble.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا