ترغب بنشر مسار تعليمي؟ اضغط هنا

SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a Topological Kondo insulator, in which a Kondo gap is developed and topologically protected surface conduction dominates low-temperature transport. Exploiting its non-linear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small DC current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, hasnt been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface state temperature in SmB6 with a RuO micro-thermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6oscillators at higher frequencies.
Superconductivity that spontaneously breaks time-reversal symmetry (TRS) has been found, so far, only in a handful of 3D crystals with bulk inversion symmetry. Here we report an observation of spontaneous TRS breaking in a 2D superconducting system w ithout inversion symmetry: the epitaxial bilayer films of bismuth and nickel. The evidence comes from the onset of the polar Kerr effect at the superconducting transition in the absence of an external magnetic field, detected by the ultrasensitive loop-less fiber-optic Sagnac interferometer. Because of strong spin-orbit interaction and lack of inversion symmetry in a Bi/Ni bilayer, superconducting pairing cannot be classified as singlet or triplet. We propose a theoretical model where magnetic fluctuations in Ni induce superconducting pairing of the dxy = +- idx^2y^2 orbital symmetry between the electrons in Bi. In this model the order parameter spontaneously breaks the TRS and has a non-zero phase winding number around the Fermi surface, thus making it a rare example of a 2D topological superconductor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا