ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to non-classical stationary states by feedback loops based on weak measurements and conditioned linear driving. We derive general ana lytical upper bounds for the single mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous measurements conditioning the feedback loop is high enough. We also consider the performance of feedback strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades with increasing temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا