ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon states entangled in continuous variables such as wavevector or frequency represent a powerful resource for quantum information protocols in higher-dimensional Hilbert spaces. At the same time, there is a problem of addressing separately th e corresponding Schmidt modes. We propose a method of engineering two-photon spectral amplitude in such a way that it contains several non-overlapping Schmidt modes, each of which can be filtered losslessly. The method is based on spontaneous parametric down-conversion (SPDC) pumped by radiation with a comb-like spectrum. There are many ways of producing such a spectrum; here we consider the simplest one, namely passing the pump beam through a Fabry-Perot interferometer. For the two-photon spectral amplitude (TPSA) to consist of non-overlapping Schmidt modes, the crystal dispersion dependence, the length of the crystal, the Fabry-Perot free spectral range and its finesse should satisfy certain conditions. We experimentally demonstrate the control of TPSA through these parameters. We also discuss a possibility to realize a similar situation using cavity-based SPDC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا