ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose an innovative strategy to discriminate between two coherent states affected by either uniform or gaussian phase noise. The strategy is based on a homodyne-like detection scheme with photon-number-resolving detectors in the regime of low-in tensity local oscillator. The experimental implementation of the detection scheme involves two hybrid photodetectors, whose outputs are used in post processing to calculate the shot-by-shot photon-number difference. The performance of this strategy is quantified in terms of the error probability in discriminating the noisy coherent signals as a function of the characteristic noise parameters.
We address realistic schemes for the generation of non-Gaussian states of light based on conditional intensity measurements performed on correlated bipartite states. We consider both quantum and classically correlated states and different kind of det ection, comparing the resulting non Gaussianity parameters upon varying the input energy and the detection efficiency. We find that quantum correlations generally lead to higher non Gaussianity, at least in the low energy regime. An experimental implementation feasible with current technology is also suggested.
We experimentally demonstrate the nonclassical photon number correlations expected in tripartite continuous variable states obtained by parametric processes. Our scheme involves a single nonlinear crystal, where two interlinked parametric interaction s take place simultaneously, and represents a bright and compact source of a sub-shot-noise tripartite light field. We analyze the effects of the pump intensities on the numbers of detected photons and on the amount of noise reduction in some details, thus demonstrating a good agreement between the experimental data and a single-mode theoretical description.
We theoretically demonstrate that detectors endowed with internal gain and operated in regimes in which they do not necessarily behave as photon-counters, but still ensure linear input/output responses, can allow a self-consistent characterization of the statistics of the number of detected photons without need of knowing their gain. We present experiments performed with a photo-emissive hybrid detector on a number of classical fields endowed with non-trivial statistics and show that the method works for both microscopic and mesoscopic photon numbers. The obtained detected-photon probability distributions agree with those expected for the photon numbers, which are also reconstructed by an independent method.
We demonstrate the possibility of a self-consistent characterization of the photon-number statistics of a light field by using photoemissive detectors with internal gain simply endowed with linear input/output responses. The method can be applied to both microscopic and mesoscopic photon-number regimes. The detectors must operate in the linear range without need of photon-counting capabilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا