ترغب بنشر مسار تعليمي؟ اضغط هنا

Accreting millisecond X-ray pulsars are an important subset of low-mass X-ray binaries in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity $L_Xsim 10^{36}$ erg s$^{-1}$). These pulsations show that matter is being channeled onto the neutron stars magnetic poles. However, such sources spend most of their time in a low-luminosity, quiescent state ($L_Xlesssim 10^{34}$ erg s$^{-1}$), where the nature of the accretion flow onto the neutron star (if any) is not well understood. Here we report that the millisecond pulsar/low-mass X-ray binary transition object PSR J1023+0038 intermittently shows coherent X-ray pulsations at luminosities nearly 100 times fainter than observed in any other accreting millisecond X-ray pulsar. We conclude that in spite of its low luminosity PSR J1023+0038 experiences episodes of channeled accretion, a discovery that challenges existing models for accretion onto magnetized neutron stars.
In this Letter we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin-frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set b y the disk/magnetosphere interaction is sufficient to explain the observations. We show as well that no clear correlation exists between the neutron star magnetic field B and the X-ray outburst luminosity Lx when considering an enlarged sample size of millisecond X-ray pulsars.
137 - Tony Wilkinson 2010
We perform phase-resolved spectroscopy of the accreting millisecond pulsar, SAX J1808.4-3658, during the slow-decay phase of the 2002 outburst. Simple phenomenological fits to RXTE PCA data reveal a pulsation in the iron line at the spin frequency of the neutron star. However, fitting more complex spectral models reveals a degeneracy between iron-line pulsations and changes in the underlying hotspot blackbody temperature with phase. By comparing with the variations in reflection continuum, which are much weaker than the iron line variations, we infer that the iron-line is not pulsed. The observed spectral variations can be explained by variations in blackbody temperature associated with rotational Doppler shifts at the neutron star surface. By allowing blackbody temperature to vary in this way, we also find a larger phase-shift between the pulsations in the Comptonised and blackbody components than has been seen in previous work. The phase-shift between the pulsation in the blackbody temperature and normalisation is consistent with a simple model where the Doppler shift is maximised at the limb of the neutron star, ~90 degrees prior to maximisation of the hot-spot projected area.
Measuring the spin of Accreting Neutron Stars is important because it can provide constraints on the Equation of State of ultra-dense matter. Particularly crucial to our physical understanding is the discovery of sub-millisecond pulsars, because this will immediately rule out many proposed models for the ground state of dense matter. So far, it has been impossible to accomplish this because, for still unknown reasons, only a small amount of Accreting Neutron Stars exhibit coherent pulsations. An intriguing explanation for the lack of pulsations is that they form only on neutron stars accreting with a very low average mass accretion rate. I have searched pulsations in the faintest persistent X-ray source known to date and I found no evidence for pulsations. The implications for accretion theory are very stringent, clearly showing that our understanding of the pulse formation process is not complete. I discuss which sources are optimal to continue the search of sub-ms pulsars and which are the new constraints that theoretical models need to explain to provide a complete description of these systems
We present a theoretical study on the nature of the ultra-luminous X-ray source NGC 1313 X-2. We evolved a set of binaries with high mass donor stars orbiting a 20 M_Sun or a 50-100 M_Sun black hole. Using constraints from optical observations we res tricted the candidate binary system for NGC 1313 X-2 to be either a 50-100 M_Sun black hole accreting from a 12-15 M_Sun main sequence star or a ~20 M_Sun black hole with a 12-15 M_Sun giant donor. If the modulation of ~6.12 days recently identified as the orbital period of the system is confirmed, a ~20 M_Sun black hole model becomes unlikely and we are left with the only possibility that the compact accretor in NGC 1313 X-2 is a massive black hole of ~50-100 M_Sun.
We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approxi mately 2 year long baseline of data, we can constrain the magnetic field of the neutron star to be 0.4x10^8 G < B < 9x10^8 G, which is within the range of typical accreting millisecond pulsars. The 2009 timing analysis allows us to put constraints on the accretion torque: the spin frequency derivative within the outburst has an upper limit of $|dot{ u}| < 3x10^-13 Hz/s at the 95% confidence level. A study of pulse profiles and their evolution during the outburst is analyzed, suggesting a systematic change of shape that depends on the outburst phase.
We present a coherent timing analysis of the 2003 outburst of the accreting millisecond pulsar XTE J1807-294. We find an upper limit for the spin frequency derivative of 5E-14 Hz/s. The sinusoidal fractional amplitudes of the pulsations are the highe st observed among the accreting millisecond pulsars and can reach values of up to 27% (2.5-30 keV). The pulse arrival time residuals of the fundamental follow a linear anti-correlation with the fractional amplitudes that suggests hot spot motion over the surface of the neutron star both in longitude and latitude. An anti-correlation between residuals and X-ray flux suggests an influence of accretion rate on pulse phase, and casts doubts on the use of standard timing techniques to measure spin frequencies and torques on the neutron star.
The measurement of the spin frequency in accreting millisecond X-ray pulsars (AMXPs) is strongly affected by the presence of an unmodeled component in the pulse arrival times called timing noise. We show that it is possible to attribute much of this timing noise to a pulse phase offset that varies in correlation with X-ray flux, such that noise in flux translates into timing noise. This could explain many of the pulse frequency variations previously interpreted in terms of true spin up or spin down, and would bias measured spin frequencies. Spin frequencies improved under this hypothesis are reported for six AMXPs. The effect would most easily be accounted for by an accretion rate dependent hot spot location.
We present a phase-coherent timing analysis of the intermittent accreting millisecond pulsar SAX J1748.9-2021. A new timing solution for the pulsar spin period and the Keplerian binary orbital parameters was achieved by phase connecting all episodes of intermittent pulsations visible during the 2001 outburst. We investigate the pulse profile shapes, their energy dependence and the possible influence of Type I X-ray bursts on the time of arrival and fractional amplitude of the pulsations. We find that the timing solution of SAX J1748.9-2021 shows an erratic behavior when selecting different subsets of data, that is related to substantial timing noise in the timing post-fit residuals. The pulse profiles are very sinusoidal and their fractional amplitude increases linearly with energy and no second harmonic is detected. The reason why this pulsar is intermittent is still unknown but we can rule out a one-to-one correspondence between Type I X-ray bursts and the appearance of the pulsations.
We present results from our Chandra and XMM-Newton observations of two low-luminosity X-ray pulsators SAX J1324.4-6200 and SAX J1452.8-5949 which have spin-periods of 172 s and 437 s respectively. The XMM-Newton spectra for both sources can be fitted well with a simple power-law model of photon index ~ 1.0. A black-body model can equally well fit the spectra with a temperature of ~ 2 keV for both sources. During our XMM-Newton observations, SAX J1324.4-6200 is detected with coherent X-ray pulsations at a period of $172.86 pm 0.02$ s while no pulsations with a pulse fraction greater than 15% (at 98% confidence level) are detected in SAX J1452.8--5949. The spin period of SAX J1324.4-6200 is found to be increasing on a time-scale of $dot{P}$ = $(6.34 pm 0.08) times 10^{-9}$ s s$^{-1}$ which would suggest that the accretor is a neutron star and not a white dwarf. Using sub-arcsec spatial resolution of the Chandra telescope, possible counterparts are seen for both sources in the near-infrared images obtained with the SOFI instrument on the New Technology Telescope. The X-ray and near-infrared properties of SAX J1324.4-6200 suggest it to be either a persistent high mass accreting X-ray pulsar or a symbiotic X-ray binary pulsar at a distance $le$ 9 kpc. We identify the infrared counterpart of SAX J1452.8--5949 to be a late-type main sequence star at a distance $le$ 10 kpc, thus ruling out SAX J1452.8--5949 to be a high mass X-ray binary. However with the present X-ray and near-infrared observations, we cannot make any further conclusive conclusion about the nature of SAX J1452.8-5949.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا