ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction {in the short limit}. Owing to the proximity effect, such a junction constitutes a thermodynamic system where {phase difference}, supercurrent, t emperature and entropy are thermodynamical variables connected by equations of state. These allow conceiving quasi-static processes that we characterize in terms of heat and work exchanged. Finally, we combine such processes to construct a Josephson-based Otto and Stirling cycles. We study the related performance in both engine and refrigerator operating mode.
We theoretically investigate the critical current of a thermally-biased SIS Josephson junction formed by electrodes made by different BCS superconductors. The response of the device is analyzed as a function of the asymmetry parameter, $r=T_{c_1} /T_ {c_2}$. We highlight the appearance of jumps in the critical current of an asymmetric junction, namely, when $r eq1$. In fact, in such case at temperatures at which the BCS superconducting gaps coincide, the critical current suddenly increases or decreases. In particular, we thoroughly discuss the counterintuitively behaviour of the critical current, which increases by enhancing the temperature of one lead, instead of monotonically reducing. In this case, we found that the largest jump of the critical current is obtained for moderate asymmetries, $rsimeq3$. In view of these results, the discussed behavior can be speculatively proposed as a temperature-based threshold single-photon detector with photon-counting capabilities, which operates non-linearly in the non-dissipative channel.
We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate that thermal transport throu gh the junction can be controlled by the bias current, since it determines the steady-state velocity of the drifting soliton. We study the effects on thermal transport of the damping affecting the soliton dynamics. In fact, a soliton locally influences the power flowing through the junction and can cause the variation of the temperature of the device. When the soliton speed increases approaching its limiting value, i.e., the Swihart velocity, we demonstrate that the soliton-induces thermal effects significantly modify. Finally, we discuss how the appropriate material selection of the superconductors forming the junction is essential, since short quasiparticle relaxation times are required to observe fast thermal effects.
The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of nontrivial topological states even in zero-dimensional systems, i.e., a system with a discrete energy spectrum. Here, we sh ow that a quantum dot coupled with two superconducting leads can realize a nontrivial zero-dimensional topological superconductor with broken time-reversal symmetry, which corresponds to the finite size limit of the one-dimensional topological superconductor. Topological phase transitions corresponds to a change of the fermion parity, and to the presence of zero-energy modes and discontinuities in the current-phase relation at zero temperature. These fermion parity transitions therefore can be revealed by the current discontinuities or by a measure of the critical current at low temperatures.
We explore the coherent thermal transport sustained by solitons through a long Josephson junction, as a thermal gradient across the system is established. We observe that a soliton causes the heat current through the system to increase. Corresponding ly, the junction warms up in correspondence of the soliton, with temperature peaks up to, e.g., approximately 56 mK for a realistic Nb-based proposed setup at a bath temperature Tbath = 4.2 K. The thermal effects on the dynamics of the soliton are also discussed. Markedly, this system inherits the topological robustness of the solitons. In view of these results, the proposed device can effectively find an application as a superconducting thermal router in which the thermal transport can be locally mastered through solitonic excitations, which positions can be externally controlled through a magnetic field and a bias current.
We propose a superconducting thermal memory device that exploits the thermal hysteresis in a flux-controlled, temperature-biased superconducting quantum-interference device (SQUID). This system reveals a flux-controllable temperature bistability, whi ch can be used to define two well-distinguishable thermal logic states. We discuss a suitable writing-reading procedure for these memory states. The time of the memory writing operation is expected to be on the order of ~0.2 ns, for a Nb-based SQUID in thermal contact with a phonon bath at 4:2 K. We suggest a non-invasive readout scheme for the memory states based on the measurement of the effective resonance frequency of a tank circuit inductively coupled to the SQUID. The proposed device paves the way for a practical implementation of thermal logic and computation. The advantage of this proposal is that it represents also an example of harvesting thermal energy in superconducting circuits.
We analyze the backscattering current induced by a time dependent constriction as a tool to probe fractional topological insulators. We demonstrate an enhancement of the total current for a fractional topological insulator induced by the dominant tun neling excitation, contrary to the decreasing present in the integer case for not too strong interactions. This feature allows to unambiguously identify fractional quasiparticles. Furthermore, the dominant tunneling processes, which may involve one or two quasiparticles depending on the interactions, can be clearly determined.
We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise trea tment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.
We present an explanation for the anomalous behavior in tunneling conductance and noise through a point contact between edge states in the Jain series $ u=p/(2np+1)$, for extremely weak-backscattering and low temperatures [Y.C. Chung, M. Heiblum, and V. Umansky, Phys. Rev. Lett. {bf{91}}, 216804 (2003)]. We consider edge states with neutral modes propagating at finite velocity, and we show that the activation of their dynamics causes the unexpected change in the temperature power-law of the conductance. Even more importantly, we demonstrate that multiple-quasiparticles tunneling at low energies becomes the most relevant process. This result will be used to explain the experimental data on current noise where tunneling particles have a charge that can reach $p$ times the single quasiparticle charge. In this paper we analyze the conductance and the shot noise to substantiate quantitatively the proposed scenario.
Current statistics of an antidot in the fractional quantum Hall regime is studied for Laughlins series. The chiral Luttinger liquid picture of edge states with a renormalized interaction exponent $g$ is adopted. Several peculiar features are found in the sequential tunneling regime. On one side, current displays negative differential conductance and double-peak structures when $g<1$. On the other side, universal sub-poissonian transport regimes are identified through an analysis of higher current moments. A comparison between Fano factor and skewness is proposed in order to clearly distinguish the charge of the carriers, regardless of possible non-universal interaction renormalizations. Super-poissonian statistics is obtained in the shot limit for $g<1$, and plasmonic effects due to the finite-size antidot are tracked.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا