ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of superconducting properties of (Ca,RE)(Fe,TM)As2 [(Ca,RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca,RE)112, whic h is similar to Co-co-doped (Ca,La)112 or (Ca,Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca,Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca,Eu)112 than other (Ca,RE)112.
Superconducting properties of Co-co-doped (Ca,RE)FeAs2 ((Ca,RE)112: RE = La, Pr) were investigated. Co-co-doping increased Tc of (Ca,Pr)112 while Mn-co-doping suppressed superconductivity of (Ca,RE)112. Co-co-doped (Ca,La)112 showed large diamagnetic screening and sharper superconducting transition than Co-free (Ca,La)112. Tczero observed in resistivity measurements increased from 14 K to 30 K by Co-co-doping, while Tconset was not increased. The critical current density (Jc) of Co-co-doped (Ca,La)112 were approximately 2.1 x 104 Acm-2 and 3.2 x 103 Acm-2 at 2 K and 25 K, respectively, near zero field. These relatively high Jcs and large diamagnetic screening observed in susceptibility measurement as for polycrystalline bulks suggest bulk superconductivity of Co-co-doped (Ca,RE)112 compounds.
Synthesis of a series of layered iron arsenides Ca1-xRExFeAs2 (112) was attempted by heating at 1000 C under a high-pressure of 2 GPa. The 112 phase successfully forms with RE = La, Ce, Nd, Sm, Eu and Gd, while Tb, Dy and Ho substituted and RE free s amples does not contain the 112 phase. The Ce, Nd, Sm, Eu and Gd doped Ca1-xRExFeAs2 are new compounds. All of them exhibit superconducting transition except for the Ce doped sample. The behaviour of the critical temperature, with the RE ionic radii have been investigated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا