ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the high temperature regime within the glass phase of an elastic object with short ranged disorder. In that regime we argue that the scaling functions of any observable are described by a continuum model with a $delta$-correlated disorder an d that they are universal up to only two parameters that can be explicitly computed. This is shown numerically on the roughness of directed polymer models and by dimensional and functional renormalization group arguments. We discuss experimental consequences such as non-monotonous behaviour with temperature.
The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1 /2 models in a transverse field, using a discretized Suzuki-Trotter imaginary time formalism. Here we show how to take analytically the continuous imaginary time limit. Our main technical contribution is an explicit procedure to generate the spin trajectories in a path integral representation of the imaginary time dynamics. As a side result we also show how this procedure can be used in simple heat-bath like Monte Carlo simulations of generic quantum spin models. The replica symmetric continuous time quantum cavity method is formulated for a wide class of models, and applied as a simple example on the Bethe lattice ferromagnet in a transverse field. The results of the methods are confronted with various approximation schemes in this particular case. On this system we performed quantum Monte Carlo simulations that confirm the exactness of the cavity method in the thermodynamic limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا