ترغب بنشر مسار تعليمي؟ اضغط هنا

The main energy-generating mechanisms in galaxies are black hole (BH) accretion and star formation (SF) and the interplay of these processes is driving the evolution of galaxies. MIR/FIR spectroscopy are able to distinguish between BH accretion and S F, as it was shown in the past by infrared spectroscopy from the space by the Infrared Space Observatory and Spitzer. Spitzer and Herschel spectroscopy together can trace the AGN and the SF components in galaxies, with extinction free lines, almost only in the local Universe, except for a few distant objects. One of the major goals of the study of galaxy evolution is to understand the history of the luminosity source of galaxies along cosmic time. This goal can be achieved with far-IR spectroscopic cosmological surveys. SPICA in combination with ground based large single dish submillimeter telescopes, such as CCAT, will offer a unique opportunity to do this. We use galaxy evolution models linked to the observed MIR-FIR counts (including Herschel) to predict the number of sources and their IR lines fluxes, as derived from observations of local galaxies. A shallow survey in an area of 0.5 square degrees, with a typical integration time of 1 hour per pointing, will be able to detect thousands of galaxies in at least three emission lines, using SAFARI, the far-IR spectrometer onboard of SPICA.
Star formation and accretion onto supermassive black holes in the nuclei of galaxies are the two most energetic processes in the Universe, producing the bulk of the observed emission throughout its history. We simulated the luminosity functions of st ar-forming and active galaxies for spectral lines that are thought to be good spectroscopic tracers of either phenomenon, as a function of redshift. We focused on the infrared (IR) and sub-millimeter domains, where the effects of dust obscuration are minimal. Using three different and independent theoretical models for galaxy formation and evolution, constrained by multi-wavelength luminosity functions, we computed the number of star-forming and active galaxies per IR luminosity and redshift bin. We converted the continuum luminosity counts into spectral line counts using relationships that we calibrated on mid- and far-IR spectroscopic surveys of galaxies in the local universe. Our results demonstrate that future facilities optimized for survey-mode observations, i.e., the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and the Cerro Chajnantor Atacama Telescope (CCAT), will be able to observe thousands of z>1 galaxies in key fine-structure lines, e.g., [SiII], [OI], [OIII], [CII], in a half-square-degree survey, with one hour integration time per field of view. Fainter lines such as [OIV], [NeV] and H_2 (0-0)S1 will be observed in several tens of bright galaxies at 1<z<2, while diagnostic diagrams of active-nucleus vs star-formation activity will be feasible even for normal z~1 galaxies. We discuss the new parameter space that these future telescopes will cover and that strongly motivate their construction.
The science case for FIR/Submm surveys of the extragalactic sky to be carried from Dome C are reviewed. The main questions concerning the formation and evolution of galaxies making up the CIRB are outlined and opportunities to exploit Dome C unique o bserving conditions through single-dish observations are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا