ترغب بنشر مسار تعليمي؟ اضغط هنا

The star formation histories (SFHs) of dwarf galaxies are thought to be emph{bursty}, with large -- order of magnitude -- changes in the star formation rate on timescales similar to O-star lifetimes. As a result, the standard interpretations of many galaxy observables (which assume a slowly varying SFH) are often incorrect. Here, we use the SFHs from hydro-dynamical simulations to investigate the effects of bursty SFHs on sample selection and interpretation of observables and make predictions to confirm such SFHs in future surveys. First, because dwarf galaxies star formation rates change rapidly, the mass-to-light ratio is also changing rapidly in both the ionizing continuum and, to a lesser extent, the non-ionizing UV continuum. Therefore, flux limited surveys are highly biased toward selecting galaxies in the emph{burst} phase and very deep observations are required to detect all dwarf galaxies at a given stellar mass. Second, we show that a $log_{10}[ u L_{ u}(1500{rm AA})/L_{{rm H}alpha}]>2.5$ implies a very recent quenching of star formation and can be used as evidence of stellar feedback regulating star formation. Third, we show that the ionizing continuum can be significantly higher than when assuming a constant SFH, which can affect the interpretation of nebular emission line equivalent widths and direct ionizing continuum detections. Finally, we show that a star formation rate estimate based on continuum measurements only (and not on nebular tracers such as the hydrogen Balmer lines) will not trace the rapid changes in star formation and will give the false impression of a star-forming main sequence with low dispersion.
Data from (non-) attenuation of gamma rays from active galactic nuclei (AGN) and gamma ray bursts (GRBs) give upper limits on the extragalactic background light (EBL) from the UV to the mid-IR that are only a little above the lower limits from observ ed galaxies. These upper limits now rule out some EBL models and purported observations, with improved data likely to provide even stronger constraints. We present EBL calculations both based on multiwavelength observations of thousands of galaxies and also based on semi-analytic models, and show that they are consistent with these lower limits from observed galaxies and with the gamma-ray upper limit constraints. Such comparisons close the loop on cosmological galaxy formation models, since they account for all the light, including that from galaxies too faint to see. We compare our results with those of other recent works, and discuss the implications of these new EBL calculations for gamma ray attenuation. Catching a few GRBs with groundbased atmospheric Cherenkov Telescope (ACT) arrays or water Cherenkov detectors could provide important new constraints on the high-redshift star formation history of the universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا