ترغب بنشر مسار تعليمي؟ اضغط هنا

The Z Cam stars IW And and V513 Cas are unusual in having outbursts following their standstills in contrast to the usual Z Cam behavior of quiescence following standstills. In order to gain further understanding of these little-studied systems, we ob tained spectra correlated with photometry from the AAVSO throughout a 3-4 month interval in 2011. In addition, time-resolved spectra were obtained in 2012 that provided orbital periods of 3.7 hrs for IW And and 5.2 hrs for V513 Cas. The photometry of V513 Cas revealed a regular pattern of standstills and outbursts with little time at quiescence, while IW And underwent many excursions from quiescence to outburst to short standstills. The spectra of IW And are similar to normal dwarf novae, with strong Balmer emission at quiescence and absorption at outburst. In contrast, V513 Cas shows a much flatter/redder spectrum near outburst with strong HeII emission and prominent emission cores in the Balmer lines. Part of this continuum difference may be due to reddening effects. While our attempts to model the outburst and standstill states of IW And indicate a mass accretion rate near 3E-9 solar masses per year, we could find no obvious reason why these systems behave differently following standstill compared to normal Z Cam stars.
{it GALEX} near ultraviolet (NUV) and far-ultraviolet (FUV) light curves of three extremely low accretion rate polars show distinct modulations in their UV light curves. While these three systems have a range of magnetic fields from 13 to 70 MG, and of late type secondaries (including a likely brown dwarf in SDSSJ121209.31+013627.7), the accretion rates are similar, and the UV observations imply some mechanism is operating to create enhanced emission zones on the white dwarf. The UV variations match in phase to the two magnetic poles viewed in the optical in WX LMi and to the single poles evident in the optical in SDSSJ1212109.31+013627.7 and SDSSJ103100.55+202832.2. Simple spot models of the UV light curves show that if hot spots are responsible for the UV variations, the temperatures are on the order of 10,000-14,000K. For the single pole systems, the size of the FUV spot must be smaller than the NUV and in all cases, the geometry is likely more complicated than a simple circular spot.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا