ترغب بنشر مسار تعليمي؟ اضغط هنا

The dispersion cancellation observed in Hong-Ou-Mandel (HOM) interference between frequency-entangled photon pairs has been the basis of quantum optical coherence tomography and quantum clock synchronization. Here we explore the effect of phase dispe rsion on ultranarrow HOM dips. We show that the higher-order dispersion, the line width of the pump laser, and the spectral shape of the parametric fluorescence have a strong effect on the dispersion cancellation in the high-resolution regime with several experimental verifications. Perfect dispersion cancellation with a linewidth of 3mu m is also demonstrated through 25 mm of water.
Quantum entanglement of two photons created by spontaneous parametric downconversion (SPDC) can be used to probe quantum optical phenomena during a single cycle of light. Harris [Phys. Rev. Lett. 98, 063602 (2007)] suggested using ultrabroad parametr ic fluorescence generated from a quasi-phase-matched (QPM) device whose poling period is chirped. In the Harris s original proposal, it is assumed that the photons are collinearly generated and then spatially separated by frequency filtering. Here, we alternatively propose using noncollinearly generated SPDC. In our numerical calculation, to achieve 1.2 cycle temporal correlation for a 532 nm pump laser, only 10% -chirped device is sufficient when noncollinear condition is applied, while a largely chirped (50%) device is required in collinear condition. We also experimentally demonstrate an octave-spanning (790-1610 nm) noncollinear parametric fluorescence from a 10% chirped MgSLT crystal using both a superconducting nanowire single-photon detector and photomultiplier tube as photon detectors. The observed SPDC bandwidth is 194 THz, which is the largest width achieved to date for a chirped QPM device. From this experimental result, our numerical analysis predicts that the bi-photon can be compressed to 1.2 cycles with appropriate phase compensation.
We cooled ultrathin tapered fibers to cryogenic temperatures and controllably coupled them with high-Q microsphere resonators at a wavelength close to the optical transition of diamond nitrogen vacancy centers. The 310-nm-diameter tapered fibers were stably nanopositioned close to the microspheres with a positioning stability of approximately 10 nm over a temperature range of 7-28 K. A cavity-induced phase shift was observed in this temperature range, demonstrating a discrete transition from undercoupling to overcoupling.
We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluo rescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two beta-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz).We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.
We succeeded in measuring phase shift spectra of a microsphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable p hase shift measurement scheme based on polarization analysis using photon counting. Using a very weak probe light (bar{n} = 0:41), we succeeded in observing the transition in the phase shift spectrum between undercoupling and overcoupling (at gap distances of 500 and 100 nm, respectively).We also used quantum state tomography to obtain a purity spectrum. Even in the overcoupling regime, the average purity was 0.982 pm 0.024 (minimum purity: 0.892), suggesting that the coherence of the fiber-microsphere system was well preserved. Based on these results, we believe this system is applicable to quantum phase gates using single light emitters such as diamond nitrogen vacancy centers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا