ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we develop DeepWiPHY, a deep learning-based architecture to replace the channel estimation, common phase error (CPE) correction, sampling rate offset (SRO) correction, and equalization modules of IEEE 802.11ax based orthogonal frequency division multiplexing (OFDM) receivers. We first train DeepWiPHY with a synthetic dataset, which is generated using representative indoor channel models and includes typical radio frequency (RF) impairments that are the source of nonlinearity in wireless systems. To further train and evaluate DeepWiPHY with real-world data, we develop a passive sniffing-based data collection testbed composed of Universal Software Radio Peripherals (USRPs) and commercially available IEEE 802.11ax products. The comprehensive evaluation of DeepWiPHY with synthetic and real-world datasets (110 million synthetic OFDM symbols and 14 million real-world OFDM symbols) confirms that, even without fine-tuning the neural networks architecture parameters, DeepWiPHY achieves comparable performance to or outperforms the conventional WLAN receivers, in terms of both bit error rate (BER) and packet error rate (PER), under a wide range of channel models, signal-to-noise (SNR) levels, and modulation schemes.
This paper presents a novel compressed sensing (CS) approach to high dimensional wireless channel estimation by optimizing the input to a deep generative network. Channel estimation using generative networks relies on the assumption that the reconstr ucted channel lies in the range of a generative model. Channel reconstruction using generative priors outperforms conventional CS techniques and requires fewer pilots. It also eliminates the need of a priori knowledge of the sparsifying basis, instead using the structure captured by the deep generative model as a prior. Using this prior, we also perform channel estimation from one-bit quantized pilot measurements, and propose a novel optimization objective function that attempts to maximize the correlation between the received signal and the generators channel estimate while minimizing the rank of the channel estimate. Our approach significantly outperforms sparse signal recovery methods such as Orthogonal Matching Pursuit (OMP) and Approximate Message Passing (AMP) algorithms such as EM-GM-AMP for narrowband mmWave channel reconstruction, and its execution time is not noticeably affected by the increase in the number of received pilot symbols.
This paper proposes a deep learning-based channel estimation method for multi-cell interference-limited massive MIMO systems, in which base stations equipped with a large number of antennas serve multiple single-antenna users. The proposed estimator employs a specially designed deep neural network (DNN) to first denoise the received signal, followed by a conventional least-squares (LS) estimation. We analytically prove that our LS-type deep channel estimator can approach minimum mean square error (MMSE) estimator performance for high-dimensional signals, while avoiding MMSEs requirement for complex channel
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا