ترغب بنشر مسار تعليمي؟ اضغط هنا

It has been known for decades that thermal conductivity of insulating crystals becomes proportional to the inverse of temperature when the latter is comparable to or higher than the Debye temperature. This behavior has been understood as resulting fr om Umklapp scattering among phonons. We put under scrutiny the magnitude of the thermal diffusion constant in this regime and find that it does not fall below a threshold set by the square of sound velocity times the Planckian time ($tau_p=hbar/k_BT$). The conclusion, based on scrutinizing the ratio in cubic crystals with high thermal resistivity, appears to hold even in glasses where Umklapp events are not conceivable. Explaining this boundary, reminiscent of a recently-noticed limit for charge transport in metals, is a challenge to theory.
Electrons confined to two dimensions display an unexpected diversity of behaviors as they are cooled to absolute zero. Noninteracting electrons are predicted to eventually localize into an insulating ground state, and it has long been supposed that e lectron correlations stabilize only one other phase: superconductivity. However, many two-dimensional (2D) superconducting materials have shown surprising evidence for metallic behavior, where the electrical resistivity saturates in the zero-temperature limit, the nature of this unexpected metallic state remains under intense scrutiny. We report electrical transport properties for two disordered 2D superconductors, indium oxide and tantalum nitride, and observe a magnetic field-tuned transition from a true superconductor to a metallic phase with saturated resistivity. This metallic phase is characterized by a vanishing Hall resistivity, suggesting that it retains particle-hole symmetry from the disrupted superconducting state.
The search for broken time reversal symmetry (TRSB) in unconventional superconductors intensified in the past year as more systems have been predicted to possess such a state. Following our pioneering study of TRSB states in Sr$_2$RuO$_4$ using magne to-optic probes, we embarked on a systematic study of several other of these candidate systems. The primary instrument for our studies is the Sagnac magneto-optic interferometer, which we recently developed. This instrument can measure magneto-optic Faraday or Kerr effects with an unprecedented sensitivity of 10 nanoradians at temperatures as low as 100 mK. In this paper we review our recent studies of TRSB in several systems, emphasizing the study of the pseudogap state of high temperature superconductors and the inverse proximity effect in superconductor/ferromagnet proximity structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا