ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotics deviation probabilities of the sum S n = X 1 + $times$ $times$ $times$ + X n of independent and identically distributed real-valued random variables have been extensively investigated , in particular when X 1 is not exponentially integrab le. For instance, A.V. Nagaev formulated exact asymptotics results for P(S n > x n) when X 1 has a semiexponential distribution (see, [16, 17]). In the same setting, the authors of [4] derived deviation results at logarithmic scale with shorter proofs relying on classical tools of large deviation theory and expliciting the rate function at the transition. In this paper, we exhibit the same asymptotic behaviour for triangular arrays of semiexponentially distributed random variables, no more supposed absolutely continuous.
Asymptotics deviation probabilities of the sum S n = X 1 + $times$ $times$ $times$ + X n of independent and identically distributed real-valued random variables have been extensively investigated, in particular when X 1 is not exponentially integrabl e. For instance, A.V. Nagaev formulated exact asymptotics results for P(S n > x n) when x n > n 1/2 (see, [13, 14]). In this paper, we derive rough asymptotics results (at logarithmic scale) with shorter proofs relying on classical tools of large deviation theory and expliciting the rate function at the transition.
62 - Fabrice Gamboa 2020
In this paper, we introduce new indices adapted to outputs valued in general metric spaces. This new class of indices encompasses the classical ones; in particular, the so-called Sobol indices and the Cram{e}r-von-Mises indices. Furthermore, we provi de asymptotically Gaussian estimators of these indices based on U-statistics. Surprisingly, we prove the asymp-totic normality straightforwardly. Finally, we illustrate this new procedure on a toy model and on two real-data examples.
40 - Agn`es Lagnoux 2016
We analyse the splitting algorithm performance in the estimation of rare event probabilities and this in a discrete multidimensional framework. For this we assume that each threshold is partitioned into disjoint subsets and the probability for a part icle to reach the next threshold will depend on the starting subset. A straightforward estimator of the rare event probability is given by the proportion of simulated particles for which the rare event occurs. The variance of this estimator we get is the sum of two parts: one part resuming the variability due to each threshold and a second part resuming the variability due to the thresholds number. This decomposition is analogous to that of the continuous case. The optimal algorithm is then derived by cancelling the first term leading to optimal thresholds. Then we compare this variance with that of the algorithm in which one of the threshold has been deleted. Finally, we investigate the sensitivity of the variance of the estimator with respect to a shape deformation of an optimal threshold. As an example, we consider a two-dimensional Ornstein-Uhlenbeck process with conformal maps for shape deformation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا