ترغب بنشر مسار تعليمي؟ اضغط هنا

Key extraction via measuring a physical quantity is a class of information theoretic key exchange protocols that rely on the physical characteristics of the communication channel to enable the computation of a shared key by two (or more) parties that share no prior secret information. The key is supposed to be information theoretically hidden to an eavesdropper. Despite the recent surge of research activity in the area, concrete claims about the security of the protocols typically rely on channel abstractions that are not fully experimentally substantiated. In this work, we propose a novel methodology for the {em experimental} security analysis of these protocols. The crux of our methodology is a falsifiable channel abstraction that is accompanied by an efficient experimental approximation algorithm of the {em conditional min-entropy} available to the two parties given the view of the eavesdropper. We focus on the signal strength between two wirelessly communicating transceivers as the measured quantity and we use an experimental setup to compute the conditional min-entropy of the channel given the view of the attacker which we find to be linearly increasing. Armed with this understanding of the channel, we showcase the methodology by providing a general protocol for key extraction in this setting that is shown to be secure for a concrete parameter selection. In this way we provide a first comprehensively analyzed wireless key extraction protocol that is demonstrably secure against passive adversaries. Our methodology uses hidden Markov models as the channel model and a dynamic programming approach to approximate conditional min-entropy but other possible instantiations of the methodology can be motivated by our work.
Steganographic protocols enable one to embed covert messages into inconspicuous data over a public communication channel in such a way that no one, aside from the sender and the intended receiver, can even detect the presence of the secret message. I n this paper, we provide a new provably-secure, private-key steganographic encryption protocol secure in the framework of Hopper et al. We first present a one-time stegosystem that allows two parties to transmit messages of length at most that of the shared key with information-theoretic security guarantees. The employment of a pseudorandom generator (PRG) permits secure transmission of longer messages in the same way that such a generator allows the use of one-time pad encryption for messages longer than the key in symmetric encryption. The advantage of our construction, compared to all previous work is randomness efficiency: in the information theoretic setting our protocol embeds a message of length n bits using a shared secret key of length (1+o(1))n bits while achieving security 2^{-n/log^{O(1)}n}; simply put this gives a rate of key over message that is 1 as n tends to infinity (the previous best result achieved a constant rate greater than 1 regardless of the security offered). In this sense, our protocol is the first truly randomness efficient steganographic system. Furthermore, in our protocol, we can permit a portion of the shared secret key to be public while retaining precisely n private key bits. In this setting, by separating the public and the private randomness of the shared key, we achieve security of 2^{-n}. Our result comes as an effect of the application of randomness extractors to stegosystem design. To the best of our knowledge this is the first time extractors have been applied in steganography.
We provide a new provably-secure steganographic encryption protocol that is proven secure in the complexity-theoretic framework of Hopper et al. The fundamental building block of our steganographic encryption protocol is a one-time stegosystem that a llows two parties to transmit messages of length shorter than the shared key with information-theoretic security guarantees. The employment of a pseudorandom generator (PRG) permits secure transmission of longer messages in the same way that such a generator allows the use of one-time pad encryption for messages longer than the key in symmetric encryption. The advantage of our construction, compared to that of Hopper et al., is that it avoids the use of a pseudorandom function family and instead relies (directly) on a pseudorandom generator in a way that provides linear improvement in the number of applications of the underlying one-way permutation per transmitted bit. This advantageous trade-off is achieved by substituting the pseudorandom function family employed in the previous construction with an appropriate combinatorial construction that has been used extensively in derandomization, namely almost t-wise independent function families.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا