ترغب بنشر مسار تعليمي؟ اضغط هنا

The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7 GeV to 5.02 TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seem to factor out with some degree of dependency on the collision species. The collision of Uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei.
We review the charged particle and photon multiplicity, and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at differ ent collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons and the transverse energy measurement.
We study the charged particle and transverse energy production mechanism from AGS, SPS, RHIC to LHC energies in the framework of nucleon and quark participants. At RHIC and LHC energies, the number of nucleons-normalized charged particle and transver se energy density in pseudorapidity, which shows a monotonic rise with centrality, turns out to be an almost centrality independent scaling behaviour when normalized to the number of participant quarks. A universal function which is a combination of logarithmic and power-law, describes well the charged particle and transverse energy production both at nucleon and quark participant level for the whole range of collision energies. Energy dependent production mechanisms are discussed both for nucleonic and partonic level. Predictions are made for the pseudorapidity densities of transverse energy, charged particle multiplicity and their ratio (the barometric observable, $frac{dE_{rm{T}}/deta}{dN_{rm{ch}}/deta} ~equiv frac{E_{rm{T}}}{N_{rm{ch}}}$) at mid-rapidity for Pb+Pb collisions at $sqrt{s_{rm{NN}}}=5.5$ TeV. A comparison with models based on gluon saturation and statistical hadron gas is made for the energy dependence of $frac{E_{rm{T}}}{N_{rm{ch}}}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا