ترغب بنشر مسار تعليمي؟ اضغط هنا

From a suitable groupoid G, we show how to construct an amenable principal groupoid whose C*-algebra is a Kirchberg algebra which is KK-equivalent to C*(G). Using this construction, we show by example that many UCT Kirchberg algebras can be realised as the C*-algebras of amenable principal groupoids.
We introduce filling families with matrix diagonalization as a refinement of the work by R{o}rdam and the first named author. As an application we improve a result on local pure infiniteness and show that the minimal tensor product of a strongly pure ly infinite $C^*$-algebra and a exact $C^*$-algebra is again strongly purely infinite. Our results also yield a sufficient criterion for the strong pure infiniteness of crossed products $Artimes_varphi mathbb{N}$ by an endomorphism $varphi$ of $A$ (cf. Theorem 7.6). Our work confirms that the special class of nuclear Cuntz-Pimsner algebras constructed by Harnisch and the first named author consist of strongly purely infinite $C^*$-algebras, and thus absorb $mathcal{O}_infty$ tensorially.
We study dimension theory for the $C^*$-algebras of row-finite $k$-graphs with no sources. We establish that strong aperiodicity - the higher-rank analogue of condition (K) - for a $k$-graph is necessary and sufficient for the associated $C^*$-algebr a to have topological dimension zero. We prove that a purely infinite $2$-graph algebra has real-rank zero if and only if it has topological dimension zero and satisfies a homological condition that can be characterised in terms of the adjacency matrices of the $2$-graph. We also show that a $k$-graph $C^*$-algebra with topological dimension zero is purely infinite if and only if all the vertex projections are properly infinite. We show by example that there are strongly purely infinite $2$-graphs algebras, both with and without topological dimension zero, that fail to have real-rank zero.
Let $G$ be a Hausdorff, etale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^0)$ are infinite in $C_r^*(G)$. If $G$ is a Hausdorff, am ple groupoid, then we show that $C^*_r(G)$ is purely infinite simple if and only if every nonzero projection in $C_0(G^0)$ is infinite in $C^*_r(G)$. We then show how this result applies to $k$-graph $C^*$-algebras. Finally, we investigate strongly purely infinite groupoid $C^*$-algebras.
In 1955 Dye proved that two von Neumann factors not of type I_2n are isomorphic (via a linear or a conjugate linear *-isomorphism) if and only if their unitary groups are isomorphic as abstract groups. We consider an analogue for C*-algebras. We show that the topological general linear group is a classifying invariant for simple, unital AH-algebras of slow dimension growth and of real rank zero, and the abstract general linear group is a classifying invariant for unital Kirchberg algebras in the UCT class.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا