ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, as recently demonstrated in systems of superconducting qubits. However, these qubits have large footprints due to their large capacitor electrodes needed to suppress losses by avoiding dielectric materials. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of the van der Waals (vdW) materials to reduce the qubit area by a factor of $>1000$ while preserving the required capacitance without increasing substantial loss. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide (NbSe$_2$) and insulating hexagonal-boron nitride (hBN). We measure a vdW transmon $T_1$ relaxation time of 1.06 $mu$s, which demonstrates a path to achieve high-qubit-density quantum processors with long coherence times, and illustrates the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.
Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the con stituent two-dimensional (2D) layered materials and the lack of dangling bonds at their atomically sharp interfaces. However, new fabrication and characterization techniques are required to determine whether these structures can achieve low loss in the microwave regime. Here we report the fabrication of superconducting microwave resonators using NbSe$_2$ that achieve a quality factor $Q > 10^5$. This value sets an upper bound that corresponds to a resistance of $leq 192 muOmega$ when considering the additional loss introduced by integrating NbSe$_2$ into a standard transmon circuit. This work demonstrates the compatibility of 2D layered materials with high-quality microwave quantum devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا