ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of the EoR with the 21-cm hyperfine emission of neutral hydrogen (HI) promise to open an entirely new window onto the formation of the first stars, galaxies and accreting black holes. In order to characterize the weak 21-cm signal, we ne ed to develop imaging techniques which can reconstruct the extended emission very precisely. Here, we present an inversion technique for LOFAR baselines at NCP, based on a Bayesian formalism with optimal spatial regularization, which is used to reconstruct the diffuse foreground map directly from the simulated visibility data. We notice the spatial regularization de-noises the images to a large extent, allowing one to recover the 21-cm power-spectrum over a considerable $k_{perp}-k_{para}$ space in the range of $0.03,{rm Mpc^{-1}}<k_{perp}<0.19,{rm Mpc^{-1}}$ and $0.14,{rm Mpc^{-1}}<k_{para}<0.35,{rm Mpc^{-1}}$ without subtracting the noise power-spectrum. We find that, in combination with using the GMCA, a non-parametric foreground removal technique, we can mostly recover the spherically average power-spectrum within $2sigma$ statistical fluctuations for an input Gaussian random rms noise level of $60 , {rm mK}$ in the maps after 600 hrs of integration over a $10 , {rm MHz}$ bandwidth.
93 - Samir Choudhuri 2014
We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried there in. The discussion here is restricted to the Galactic synchrotron radiation, the most dominant foreground component after point source removal. Our theoretical analysis is validated using simulations at 150 MHz, mainly for GMRT and also briefly for LOFAR. The Bare Estimator uses pairwise correlations of the measured visibilities, while the Tapered Gridded Estimator uses the visibilities after gridding in the uv plane. The former is very precise, but computationally expensive for large data. The latter has a lower precision, but takes less computation time which is proportional to the data volume. The latter also allows tapering of the sky response leading to sidelobe suppression, an useful ingredient for foreground removal. Both estimators avoid the positive bias that arises due to the system noise. We consider amplitude and phase errors of the gain, and the w-term as possible sources of errors . We find that the estimated angular power spectrum is exponentially sensitive to the variance of the phase errors but insensitive to amplitude errors. The statistical uncertainties of the estimators are affected by both amplitude and phase errors. The w-term does not have a significant effect at the angular scales of our interest. We propose the Tapered Gridded Estimator as an effective tool to observationally quantify both foregrounds and the cosmological 21-cm signal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا