ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore trends in galaxy properties with Mpc-scale structures using catalogues of environment and large scale structure from the Galaxy And Mass Assembly (GAMA) survey. Existing GAMA catalogues of large scale structure, group and pair membership a llow us to construct galaxy stellar mass functions for different environmental types. To avoid simply extracting the known underlying correlations between galaxy properties and stellar mass, we create a mass matched sample of galaxies with stellar masses between $9.5 leq log{M_*/h^{-2} M_{odot}} leq 11$ for each environmental population. Using these samples, we show that mass normalised galaxies in different large scale environments have similar energy outputs, $u-r$ colours, luminosities, and morphologies. Extending our analysis to group and pair environments, we show galaxies that are not in groups or pairs exhibit similar characteristics to each other regardless of broader environment. For our mass controlled sample, we fail to see a strong dependence of S{e}rsic index or galaxy luminosity on halo mass, but do find that it correlates very strongly with colour. Repeating our analysis for galaxies that have not been mass controlled introduces and amplifies trends in the properties of galaxies in pairs, groups, and large scale structure, indicating that stellar mass is the most important predictor of the galaxy properties we examine, as opposed to environmental classifications.
We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01$<$z$<$0.1 (8399 galaxies in $g$ to $K_s$ bands) to derive the stellar mass $-$ half-light radius relations for various divisions of early and late-type samples. We find the choice of division between early and late (i.e., colour, shape, morphology) is not particularly critical, however, the adopted mass limits and sample selections (i.e., the careful rejection of outliers and use of robust fitting methods) are important. In particular we note that for samples extending to low stellar mass limits ($<10^{10}mathcal{M_{odot}}$) the Sersic index bimodality, evident for high mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass $-$ half-light radius relations are reported for a variety of galaxy population subsets in 10 bands ($ugrizZYJHK_s$) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass $-$ half-light radius relations with wavelength we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at $10^{10}mathcal{M_{odot}}$ both spiral systems and ellipticals show a decrease in size of 13% from $g$ to $K_s$ (which is near linear in log wavelength). Finally we note that the sizes used in this work are derived from 2D Sersic light profile fitting (using GALFIT3), i.e., elliptical semi-major half light radii, improving on earlier low-z benchmarks based on circular apertures.
From two very simple axioms: (1) that AGN activity traces spheroid formation, and (2) that the cosmic star-formation history is dominated by spheroid formation at high redshift, we derive simple expressions for the star-formation histories of spheroi ds and discs, and their implied metal enrichment histories. Adopting a Baldry-Glazebrook initial mass function we use these relations and apply PEGASE.2 to predict the z=0 cosmic spectral energy distributions (CSEDs) of spheroids and discs. The model predictions compare favourably to the dust-corrected CSED recently reported by the Galaxy And Mass Assembly (GAMA) team from the FUV through to the K band. The model also provides a reasonable fit to the total stellar mass contained within spheroid and disc structures as recently reported by the Millennium Galaxy Catalogue team. Three interesting inferences can be made following our axioms: (1) there is a transition redshift at z ~ 1.7 at which point the Universe switches from what we refer to as hot mode evolution (i.e., spheroid formation/growth via mergers and/or collapse) to what we term cold mode evolution (i.e., disc formation/growth via gas infall and minor mergers); (2) there is little or no need for any pre-enrichment prior to the main phase of star-formation; (3) in the present Universe mass-loss is fairly evenly balanced with star-formation holding the integrated stellar mass density close to a constant value. The model provides a simple prediction of the energy output from spheroid and disc projenitors, the build-up of spheroid and disc mass, and the mean metallicity enrichment of the Universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا