ترغب بنشر مسار تعليمي؟ اضغط هنا

Algorithmic systems---from rule-based bots to machine learning classifiers---have a long history of supporting the essential work of content moderation and other curation work in peer production projects. From counter-vandalism to task routing, basic machine prediction has allowed open knowledge projects like Wikipedia to scale to the largest encyclopedia in the world, while maintaining quality and consistency. However, conversations about how quality control should work and what role algorithms should play have generally been led by the expert engineers who have the skills and resources to develop and modify these complex algorithmic systems. In this paper, we describe ORES: an algorithmic scoring service that supports real-time scoring of wiki edits using multiple independent classifiers trained on different datasets. ORES decouples several activities that have typically all been performed by engineers: choosing or curating training data, building models to serve predictions, auditing predictions, and developing interfaces or automated agents that act on those predictions. This meta-algorithmic system was designed to open up socio-technical conversations about algorithms in Wikipedia to a broader set of participants. In this paper, we discuss the theoretical mechanisms of social change ORES enables and detail case studies in participatory machine learning around ORES from the 5 years since its deployment.
This paper replicates, extends, and refutes conclusions made in a study published in PLoS ONE (Even Good Bots Fight), which claimed to identify substantial levels of conflict between automated software agents (or bots) in Wikipedia using purely quant itative methods. By applying an integrative mixed-methods approach drawing on trace ethnography, we place these alleged cases of bot-bot conflict into context and arrive at a better understanding of these interactions. We found that overwhelmingly, the interactions previously characterized as problematic instances of conflict are typically better characterized as routine, productive, even collaborative work. These results challenge past work and show the importance of qualitative/quantitative collaboration. In our paper, we present quantitative metrics and qualitative heuristics for operationalizing bot-bot conflict. We give thick descriptions of kinds of events that present as bot-bot reverts, helping distinguish conflict from non-conflict. We computationally classify these kinds of events through patterns in edit summaries. By interpreting found/trace data in the socio-technical contexts in which people give that data meaning, we gain more from quantitative measurements, drawing deeper understandings about the governance of algorithmic systems in Wikipedia. We have also released our data collection, processing, and analysis pipeline, to facilitate computational reproducibility of our findings and to help other researchers interested in conducting similar mixed-method scholarship in other platforms and contexts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا