ترغب بنشر مسار تعليمي؟ اضغط هنا

The excitations of a two-dimensional electron gas in quantum wells with intermediate carrier density (~10^{11} cm^{-2}), i.e., between the exciton-trion- and the Fermi-Sea range, are so far poorly understood. We report on an approach to bridge this g ap by a magneto-photoluminescence study of modulation-doped (Cd,Mn)Te quantum well structures. Employing their enhanced spin splitting, we analyzed the characteristic magnetic-field behavior of the individual photoluminescence features. Based on these results and earlier findings by other authors, we present a new approach for understanding the optical transitions at intermediate densities in terms of four-particle excitations, the Suris tetrons, which were up to now only predicted theoretically. All characteristic photoluminescence features are attributed to emission from these quasi-particles when attaining different final states.
We present Maxwell equations with source terms for the electromagnetic field interacting with a moving electron in a spin-orbit coupled semiconductor heterostructure. We start with the eight--band ${bm k}{bm p}$ model and derive the electric and magn etic polarization vectors using the Gordon--like decomposition method. Next, we present the ${bm k}{bm p}$ effective Lagrangian for the nonparabolic conduction band electrons interacting with electromagnetic field in semiconductor heterostructures with abrupt interfaces. This Lagrangian gives rise to the Maxwell equations with source terms and boundary conditions at heterointerfaces as well as equations for the electron envelope wave function in the external electromagnetic field together with appropriate boundary conditions. As an example, we consider spin--orbit effects caused by the structure inversion asymmetry for the conduction electron states. We compute the intrinsic contribution to the electric polarization of the steady state electron gas in asymmetric quantum well in equilibrium and in the spin Hall regime. We argue that this contribution, as well as the intrinsic spin Hall current, are not cancelled by the elastic scattering processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا