ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a proof-of-principle experimental demonstration of a reconfigurable entanglement distribution scheme utilizing a poled fiber-based source of broadband polarization-entangled photon pairs and dense wavelength-division multiplexing. A large bandwidth (> 90 nm, centered at 1555 nm) and highly spectrally correlated nature of the entangled source can be exploited to allow for the generation of more than 25 frequency-conjugate entangled pairs when aligned to the standard 200 GHz ITU grid. In this work, three frequency-conjugate entangled pairs are used to demonstrate quantum key distribution, with the wavelength-selective switching done manually. The entangled pairs are delivered over 40 km of actual fiber, and an estimated secure key rate of up to 20 bits/s per bi-party is obtained.
Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for supersymmetry is one of the main aims of the Large Hadron Collider. The other possible manifestation of supersymmetry is the Dar k Matter in the Universe. The present lectures contain a brief introduction to supersymmetry in particle physics. The main notions of supersymmetry are introduced. The supersymmetric extension of the Standard Model -- the Minimal Supersymmetric Standard Model -- is considered in more detail. Phenomenological features of the Minimal Supersymmetric Standard Model as well as possible experimental signatures of supersymmetry at the Large Hadron Collider are described. The present limits on supersymmetric particles are presented and the allowed region of parameter space of the MSSM is shown.
We analyse the possibility to get light long-lived charginos within the framework of the MSSM with gravity mediated SUSY breaking. We find out that this possibility can be realized in the so-called focus-point region of parameter space. The mass dege neracy of higgsino-like chargino and two higgsino-like neutralinos is the necessary condition for a long lifetime. It requires the fine-tuning of parameters, but being a single additional constraint in the whole parameter space it can be fulfilled in the Constrained MSSM along the border line where radiative electroweak symmetry breaking fails. In a narrow band close to the border line the charginos are long-lived particles. The cross-sections of their production and co-production at the LHC via electroweak interaction reach a few tenth of pb.
The parameter space of the Constrained Minimal supersymmetric Standard Model is considered. It is shown that for the particular choice of parameters there are some regions where long-living charged superparticles exist. Two regions of interest are th e co-annihilation region with light staus, and the region with large negative trilinear scalar coupling A distinguished by light stops. The phenomenology of long-living superparticles is briefly discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا