ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse sensitivity of the gigaton volume telescope Baikal-GVD for detection of neutrino signal from dark matter annihilations or decays in the Galactic Center. Expected bounds on dark matter annihilation cross section and its lifetime are found for several annihilation/decay channels.
We have analyzed a data set taken over 2.76 years live time with the Baikal neutrino telescope NT200. The goal of the analysis is to search for neutrinos from dark matter annihilation in the center of the Sun. Apart from the conventional annihilation channels $bbar{b}$, $W^+W^-$ and $tau^+tau^-$ we consider also the annihilation of dark matter particles into monochromatic neutrinos. From the absence of any excess of events from the direction of the Sun over the expected background, we derive 90% upper limits on the fluxes of muons and muon neutrinos from the Sun, as well as on the elastic cross sections of dark matter scattering on protons.
The Prototyping phase of the BAIKAL-GVD project has been started in April 2011 with the deployment of a three string engineering array which comprises all basic elements and systems of the Gigaton Volume Detector (GVD) in Lake Baikal. In April 2012 t he version of engineering array which comprises the first full-scale string of the GVD demonstration cluster has been deployed and operated during 2012. The first stage of the GVD demonstration cluster which consists of three strings is deployed in April 2013. We review the Prototyping phase of the BAIKAL-GVD project and describe the configuration and design of the 2013 engineering array.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا