ترغب بنشر مسار تعليمي؟ اضغط هنا

Bosonic cascades formed by lattices of equidistant energy levels sustaining radiative transitions between nearest layers are promising for the generation of coherent terahertz radiation. We show how, also for the light emitted by the condensates in t he visible range, they introduce new regimes of emission. Namely, the quantum statistics of bosonic cascades exhibit super-bunching plateaus. This demonstrates further potentialities of bosonic cascade lasers for the engineering of quantum properties of light useful for imaging applications.
Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the hidd en variable which characterizes the rate of exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers.
Light transport in a dense and disordered cold atomic ensemble, where the cooperation of atomic dipoles essentially modifies their coupling with the radiation modes, offers an alternative approach to light-matter interfacing protocols. Here, we show how the cooperativity and quasi-static dipole interaction affect the process of light propagation under the conditions of electromagnetically-induced transparency (EIT). We perform comparative analysis of the self-consistent approach with ab-initio microscopic calculations and emphasize the role of the interatomic interaction in the dipoles dynamics. Our results show that in such a dense and strongly disordered system the EIT-based light storage protocol stays relatively insensitive to configuration variations and can be obtained with essentially less atoms than it is normally needed for dilute configurations.
109 - A.S. Sheremet 2010
We consider the coherent stimulated Raman process developing in an optically dense and disordered atomic medium in application to the quantum memory scheme. Our theoretical model predicts that the hyperfine interaction in the excited state of alkali atoms can positively affect on the quantum memory efficiency. Based on the concept of the coherent information transfer we analyze and compare the memory requirements for storage of single photon and macroscopic multi-photon light pulses.
We consider the coherent stimulated Raman process developing in an optically dense disordered atomic medium, which can also incoherently scatter the light over all outward directions. The Raman process is discussed in the context of a quantum memory scheme and we point out the difference in its physical nature from a similar but not identical protocol based on the effect of electromagnetically induced transparency (EIT). We show that the Raman and EIT memory schemes do not compete but complement one another and each of them has certain advantages in the area of its applicability. We include in our consideration an analysis of the transient processes associated with switching the control pulse off or on and follow how they modify the probe pulse dynamics on the retrieval stage of the memory protocol.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا