ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. They combined together into the global model of blood circulation. Some results of numerical simulations concerning matt er transport through the human organism and heart diseases are represented in the end.
Blood system functions are very diverse and important for most processes in human organism. One of its primary functions is matter transport among different parts of the organism including tissue supplying with oxygen, carbon dioxide excretion, drug propagation etc. Forecasting of these processes under normal conditions and in the presence of different pathologies like atherosclerosis, loss of blood, anatomical abnormalities, pathological changing in chemical transformations and others is significant issue for many physiologists. In this connection should be pointed out that global processes are of special interest as they include feedbacks and interdependences among different regions of the organism. Thus the main goal of this work is to develop the model allowing to describe effectively blood flow in the whole organism. As we interested in global processes the models of the four vascular trees (arterial and venous parts of systemic and pulmonary circulation) must be closed with heart and peripheral circulation models. As one of the model applications the processes of the blood loss is considered in the end of the paper.
Frequently during its lifetime a human organism is subjected to the acoustical and similar to them vibrating impacts. Under the certain conditions such influence may cause physiological changes in the organs functioning. Thus the study of the oscilla tory mechanical impacts to the organism is very important task of the numerical physiology. It allows to investigate the endurance limits of the organism and to develop protective measures in order to extend them. The noise nuisances affects to the most parts of the organism disrupting their functions. The vibrating disturbances caused to the lung function as one of the most sensitive to the acoustical impacts is considered in this work. The model proposed to describe the air motion in trachea-bronchial tree is based on the one dimensional no-linear theory including mass and momentum conservation for the air flow in flexible tubes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا