ترغب بنشر مسار تعليمي؟ اضغط هنا

A metal-insulator transition (MIT) in BiFeO$_3$ under pressure was investigated by a method combining Generalized Gradient Corrected Local Density Approximation with Dynamical Mean-Field Theory (GGA+DMFT). Our paramagnetic calculations are found to b e in agreement with experimental phase diagram: Magnetic and spectral properties of BiFeO3 at ambient and high pressures were calculated for three experimental crystal structures $R3c$, $Pbnm$ and $Pmbar{3}m$. At ambient pressure in the $R3c$ phase, an insulating gap of 1.2 eV was obtained in good agreement with its experimental value. Both $R3c$ and $Pbnm$ phases have a metal-insulator transition that occurs simultaneously with a high-spin (HS) to low-spin (LS) transition. The critical pressure for the $Pbnm$ phase is 25-33 GPa that agrees well with the experimental observations. The high pressure and temperature $Pmbar{3}m$ phase exhibits a metallic behavior observed experimentally as well as in our calculations in the whole range of considered pressures and undergoes to the LS state at 33 GPa where a $Pbnm$ to $Pmbar{3}m$ transition is experimentally observed. The antiferromagnetic GGA+DMFT calculations carried out for the $Pbnm$ structure result in simultaneous MIT and HS-LS transitions at a critical pressure of 43 GPa in agreement with the experimental data.
Spectral properties of fcc-Ce have been calculated in frames of modern DFT+DMFT method with Hybridization expansion CT-QMC solver. The influence of Hunds exchange and spin-orbit coupling (SOC) on spectral properties of Ce were investigated. SOC is re sponsible for the shape of spectra near the Fermi level and Hunds exchange interaction doesnt change the obtained spectra and can be neglected.
Band structure of metallic sodium cobaltate Na$_x$CoO$_2$ ($x$=0.33, 0.48, 0.61 0.72) has been investigated by local density approximation+Hubbard $U$ (LDA+$U$) method and within Gutzwiller approximation for the Co-$t_{2g}$ manifold. Correlation effe cts being taken into account results in suppression of the $e_g$ hole pockets at the Fermi surface in agreement with recent angle-resolved photo-emission spectroscopy (ARPES) experiments. In the Gutzwiller approximation the bilayer splitting is significantly reduced due to the correlation effects. The formation of high spin (HS) state in Co $d$-shell was shown to be very improbable.
We present first-principles investigation of the electronic structure and magnetic properties of uranium monochalcogenides: US, USe, UTe. The calculations were performed by using recently developed LDA+U+SO method in which both Coulomb and spin-orbit interactions have been taken into account in rotationally invariant form. We discuss the problem of choice of the Coulomb interaction value. The calculated [111] easy axes agree with those experimentally observed. The electronic configuration 5$f^3$ was found for all uranium compounds under investigation.
The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecula r dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in $f$-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.
The LDA+DMFT (local density approximation combined with dynamical mean-field theory) computation scheme has been used to study spectral and magnetic properties of FeSi and Fe$_{1-x}$Co$_{x}$Si. Having compared different models we conclude that a corr elated band insulator scenario in contrast to Kondo insulator model agrees with FeSi band structure as well as experimental data. Coulomb correlation effects lead to band narrowing of the states near the Fermi level with mass renormalization parameter $m^*approx 2$ in agreement with the results of angle-resolved photoemission spectroscopy (ARPES). Temperature dependence of spectral functions and magnetic susceptibility calculated in DMFT reproduces transition from nonmagnetic semiconductor to metal with local magnetic moments observed experimentally. Cobalt doping leads to ferromagnetism that has itinerant nature and can be successfully described by LDA+DMFT method.
The experimental data available up to date in literature corresponding to the paramagnetic - spin density wave transition in nonsuperconducting LaOFeAs are discussed. In particular, we pay attention that upon spin density wave transition there is a r elative decrease of the density of states on the Fermi level and a pseudogap formation. The values of these quantities are not properly described in frames of the density functional theory. The agreement of them with experimental estimations becomes more accurate with the use of fixed spin moment procedure when iron spin moment is set to experimental value. Strong electron correlations which are not included into the present calculation scheme may lead both to the decrease of spin moment and renormalization of energy spectrum in the vicinity of the Fermi level for correct description of discussed characteristics.
Effects of Coulomb correlation on LaOFeAs electronic structure have been investigated by LDA+DMFT(QMC) method. The calculation results show that LaOFeAs is in the regime of intermediate correlation strength with significant part of the spectral densi ty moved from the Fermi energy to Hubbard bands. However the system is not on the edge of metal insulator-transition because increase of the Coulomb interaction parameter value from $U$=4.0 eV to $U$=5.0 eV did not result in insulator state. Correlations affect different d-orbitals not in the same way. $t_{2g}$ states ($xz,yz$ and $x^2-y^2$ orbitals) have higher energy due to crystal filed splitting and are nearly half-filled. Their spectral functions have pseudogap with Fermi energy position on the higher sub-band slope. Lower energy $e_g$ set of d-orbitals ($3z^2-r^2$ and $xy$) have significantly larger occupancy values with typically metallic spectral functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا