ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiconductor billiards are often considered as ideal systems for studying dynamical chaos in the quantum mechanical limit. In the traditional picture, once the electrons mean free path, as determined by the mobility, becomes larger than the device, disorder is negligible and electron trajectories are shaped by specular reflection from the billiard walls alone. Experimental insight into the electron dynamics is normally obtained by magnetoconductance measurements. A number of recent experimental studies have shown these measurements to be largely independent of the billiards exact shape, and highly dependent on sample-to-sample variations in disorder. In this paper, we discuss these more recent findings within the full historical context of work on semiconductor billiards, and offer strong evidence that small-angle scattering at the sub-100 nm length-scale dominates transport in these devices, with important implications for the role these devices can play for experimental tests of ideas in quantum chaos.
We have fabricated quantum dot single electron transistors, based on AlGaAs/GaAs heterojunctions without modulation doping, which exhibit clear and stable Coulomb blockade oscillations. The temperature dependence of the Coulomb blockade peak lineshap e is well described by standard Coulomb blockade theory in the quantum regime. Bias spectroscopy measurements have allowed us to directly extract the charging energy, and showed clear evidence of excited state transport, confirming that individual quantum states in the dot can be resolved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا