ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the competition of magneto-dipole, anisotropy and exchange interactions in composite three dimensional multiferroics. Using Monte Carlo simulations we show that magneto-dipole interaction does not suppress the ferromagnetic state caused by t he interaction of the ferroelectric matrix and magnetic subsystem. However, the presence of magneto-dipole interaction influences the order-disorder transition: depending on the strength of magneto-dipole interaction the transition from the ferromagnetic to the superparamagnetic state is accompanied either by creation of vortices or domains of opposite magnetization. We show that the temperature hysteresis loop occurs due to non-monotonic behavior of exchange interaction versus temperature. The origin of this hysteresis is related to the presence of stable magnetic domains which are robust against thermal fluctuations.
We consider the behavior of Fermi atoms on optical superlattices with two-well structure of each node. Fermions on such lattices serve as an analog simulator of Fermi type Hamiltonian. We derive a mapping between fermion quantum ordering in the optic al superlattices and the spin-orbital physics developed for degenerate $d$-electron compounds. The appropriate effective spin-orbital model appears to be the modification of the Kugel-Khomskii Hamiltonian. We show how different ground states of this Hamiltonian correspond to particular spin-pseudospin arrangement patterns of fermions on the lattice. The dependence of fermion arrangement on phases of complex hopping amplitudes is illustrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا