ترغب بنشر مسار تعليمي؟ اضغط هنا

We predict the effect of the roton instability for a two-dimensional weakly interacting gas of tilted dipoles in a single homogeneous quantum layer. Being typical for strongly correlated systems, the roton phenomena appear to occur in a weakly intera cting gas. It is important that in contrast to a system of normal to wide layer dipoles, breaking of the rotational symmetry for a system of tilted dipoles leads to the convergence of the condensate depletion even up to the threshold of the roton instability, with mean-field approach being valid. Predicted effects can be observed in a wide class of dipolar systems. We suggest observing predicted phenomena for systems of ultracold atoms and polar molecules in optical lattices, and estimate optimal experimental parameters.
The formation of the roton-maxon excitation spectrum and the roton instability effect for a weakly correlated Bose gas of dipolar excitons in a semiconductor layer are predicted. The stability diagram is calculated. According to our numerical estimat ions, the threshold of the roton instability for Bose-Einstein condensed exciton gas with roton-maxon spectrum is achievable experimentally, e.g., in GaAs semiconductor layers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا