ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the harmonic and anharmonic contributions to the phonon spectrum of lead telluride, and perform a complete characterization of how the anharmonic effects dominate the phonons in PbTe as temperature increases. This effect is the stronge st factor in the favorable thermoelectric properties of PbTe: an optical-acoustic phonon band crossing reduces the speed of sound and the intrinsic thermal conductivity. We present the detailed temperature dependence of the dispersion relation and compare our calculated neutron scattering cross section with recent experimental measurements. We analyze the thermal resistivitys variation with temperature and clarify misconceptions about existing experimental literature. This quantitative prediction opens the way to phonon phase space engineering, to tailor the lifetimes of crucial heat carrying phonons.
The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of CuGa2, a canonical ternary semiconductor of the chalcopyrite family. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume thermal expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation and the results are compared with data obtained on samples with the natural isotope composition for Cu, Ga and S, as well as for isotope enriched samples.
During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.
In recent years, there has been increasing interest in the specific heat $C$ of insulators and semiconductors because of the availability of samples with different isotopic masses and the possibility of performing textit{ab initio} calculations of it s temperature dependence $C(T)$ using as a starting point the electronic band structure. Most of the crystals investigated are elemental (e.g., germanium) or binary (e.g., gallium nitride) semiconductors. The initial electronic calculations were performed in the local density approximation and did not include spin-orbit interaction. Agreement between experimental and calculated results was usually found to be good, except for crystals containing heavy atoms (e.g., PbS) for which discrepancies of the order of 20% existed at the low temperature maximum found for $C/T^3$. It has been conjectured that this discrepancies result from the neglect of spin-orbit interaction which is large for heavy atoms ($Delta_0sim$1.3eV for the $p$ valence electrons of atomic lead). Here we discuss measurements and textit{ab initio} calculations of $C(T)$ for crystalline bismuth ($Delta_0sim$1.7 eV), strictly speaking a semimetal but in the temperature region accessible to us ($T >$ 2K) acting as a semiconductor. We extend experimental data available in the literature and notice that the textit{ab initio} calculations without spin-orbit interaction exhibit a maximum at $sim$8K, about 20% lower than the measured one. Inclusion of spin-orbit interaction decreases the discrepancy markedly: The maximum of $C(T)$ is now only 7% larger than the measured one. Exact agreement is obtained if the spin-orbit hamiltonian is reduced by a factor of $sim$0.8.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا