ترغب بنشر مسار تعليمي؟ اضغط هنا

352 - A.G. Gibb 2007
Results are presented of a survey of SiO 5-4 emission observed with the James Clerk Maxwell Telescope (JCMT) towards a sample of outflows from massive young stellar objects. The sample is drawn from a single-distance study by Ridge & Moore. In a samp le of 12 sources, the 5-4 line was detected in 5, a detection rate of 42 per cent. This detection rate is higher than that found for a sample of low-luminosity outflow sources, although for sources of comparable luminosity, it is in good agreement with the results of a previous survey of high luminosity sources. For most of the detected sources, the 5-4 emission is compact or slightly extended along the direction of the outflow. NGC6334I shows a clear bipolar flow in the 5-4 line. Additional data were obtained for W3-IRS5, AFGL5142 and W75N for the 2-1 transition of SiO using the Berkeley-Illinois-Maryland Association (BIMA) millimetre interferometer. There is broad agreement between the appearance of the SiO emission in both lines, though there are some minor differences. The 2-1 emission in AFGL5142 is resolved into two outflow lobes which are spatially coincident on the sky, in good agreement with previous observations. In general the SiO emission is clearly associated with the outflow. The primary indicator of SiO 5-4 detectability is the outflow velocity, i.e. the presence of SiO is an indicator of a high velocity outflow. This result is consistent with the existence of a critical shock velocity required to disrupt dust grains and subsequent SiO formation in post-shock gas. There is also weak evidence that higher luminosity sources and denser outflows are more likely to be detected.
118 - A.G. Gibb 2007
We present high-resolution observations made with the Very Large Array (VLA) in its A configuration at frequencies between 5 and 43 GHz of a sample of five massive young stellar objects (YSOs): LkHa101, NGC2024-IRS2, S106-IR, W75N and S140-IRS1. The resolution varied from 0.04 arcsec (at 43 GHz) to 0.5 arcsec (at 5 GHz), corresponding to a linear resolution as high as 17 AU for our nearest source. A MERLIN observation of S106-IR at 23 GHz with 0.03-arcsec resolution is also presented. S106-IR and S140-IRS1 are elongated at 43 GHz perpendicular to their large scale bipolar outflows. This confirms the equatorial wind picture for these sources seen previously in MERLIN 5 GHz observations. The other sources are marginally resolved at 43 GHz. The spectral indices we derive for the sources in our sample range from +0.2 to +0.8, generally consistent with ionized stellar winds. We have modelled our sources as uniform, isothermal spherical winds, with LkHa101 and NGC2024-IRS2 yielding the best fits. However, in all cases our fits give wind temperatures of only 2000 to 5000 K, much less than the effective temperatures of main-sequence stars of the same luminosity, a result which is likely due to the clumpy nature of the winds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا