ترغب بنشر مسار تعليمي؟ اضغط هنا

Context: Molecular data of extreme environments, such as Arp 220, but also NGC 253, show evidence for extremely high cosmic ray (CR) rates (10^3-10^4 * Milky Way) and mechanical heating from supernova driven turbulence. Aims: The consequences of hi gh CR rates and mechanical heating on the chemistry in clouds are explored. Methods: PDR model predictions are made for low, n=10^3, and high, n=10^5.5 cm^-3, density clouds using well-tested chemistry and radiation transfer codes. Column densities of relevant species are discussed, and special attention is given to water related species. Fluxes are shown for fine-structure lines of O, C+, C, and N+, and molecular lines of CO, HCN, HNC, and HCO+. A comparison is made to an X-ray dominated region model. Results: Fine-structure lines of [CII], [CI], and [OI] are remarkably similar for different mechanical heating and CR rates, when already exposed to large amounts of UV. HCN and H2O abundances are boosted for very high mechanical heating rates, while ionized species are relatively unaffected. OH+ and H2O+ are enhanced for very high CR rates zeta > 5 * 10^-14 s^-1. A combination of OH+, OH, H2O+, H2O, and H3O+ trace the CR rates, and are able to distinguish between enhanced cosmic rays and X-rays.
Aims: Molecular emission lines originating in the nuclei of luminous infra-red galaxies are used to determine the physical properties of the nuclear ISM in these systems. Methods: A large observational database of molecular emission lines is compar ed with model predictions that include heating by UV and X-ray radiation, mechanical heating, and the effects of cosmic rays. Results: The observed line ratios and model predictions imply a separation of the observedsystems into three groups: XDRs, UV-dominated high-density (n>=10^5 cm-3) PDRs, and lower-density (n=10^4.5 cm-3) PDRs that are dominated by mechanical feedback. Conclusions: The division of the two types of PDRs follows naturally from the evolution of the star formation cycle of these sources, which evolves from deeply embedded young stars, resulting in high-density (n>=10^5 cm-3) PDRs, to a stage where the gas density has decreased (n=10^4.5 cm-3) and mechanical feedback from supernova shocks dominates the heating budget.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا