ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on Gemini/GMOS observations of two newly discovered globular clusters in the outskirts of M31. These objects, PAndAS-7 and PAndAS-8, lie at a galactocentric radius of ~87 kpc and are projected, with separation ~19 kpc, onto a field halo sub structure known as the South-West Cloud. We measure radial velocities for the two clusters which confirm that they are almost certainly physically associated with this feature. Colour-magnitude diagrams reveal strikingly short, exclusively red horizontal branches in both PA-7 and PA-8; both also have photometric [Fe/H] = -1.35 +/- 0.15. At this metallicity, the morphology of the horizontal branch is maximally sensitive to age, and we use the distinctive configurations seen in PA-7 and PA-8 to demonstrate that both objects are very likely to be at least 2 Gyr younger than the oldest Milky Way globular clusters. Our observations provide strong evidence for young globular clusters being accreted into the remote outer regions of M31 in a manner entirely consistent with the established picture for the Milky Way, and add credence to the idea that similar processes play a central role in determining the composition of globular cluster systems in large spiral galaxies in general.
132 - A.D. Mackey 2008
We present deep colour-magnitude diagrams for three rich intermediate-age star clusters in the Large Magellanic Cloud, constructed from archival ACS F435W and F814W imaging. All three clusters exhibit clear evidence for peculiar main-sequence turn-of fs. NGC 1846 and 1806 each possess two distinct turn-off branches, while the turn-off for NGC 1783 shows a much larger spread in colour than can be explained by the photometric uncertainties. We demonstrate that although all three clusters contain significant populations of unresolved binary stars, these cannot be the underlying cause of the observed turn-off morphologies. The simplest explanation is that each cluster is composed of at least two different stellar populations with very similar metal abundances but ages separated by up to ~300 Myr. The origin of these unusual properties remains unidentified; however, the fact that at least three massive clusters containing multiple stellar populations are now known in the LMC suggests a potentially significant formation channel.
We present the results from realistic N-body modelling of massive star clusters in the Magellanic Clouds. We have computed eight simulations with N ~ 10^5 particles; six of these were evolved for at least a Hubble time. The aim of this modelling is t o examine the possibility of large-scale core expansion in massive star clusters and search for a viable dynamical origin for the radius-age trend observed for such objects in the Magellanic Clouds. We identify two physical processes which can lead to significant and prolonged cluster core expansion: mass-loss due to rapid stellar evolution in a primordially mass segregated cluster, and heating due to a retained population of stellar-mass black holes. These two processes operate over different time-scales - the former occurs only at early times and cannot drive core expansion for longer than a few hundred Myr, while the latter typically does not begin until several hundred Myr have passed but can result in core expansion lasting for many Gyr. We investigate the behaviour of these expansion mechanisms in clusters with varying degrees of primordial mass segregation and in clusters with varying black hole retention fractions. In combination, the two processes can lead to a wide variety of evolutionary paths on the radius-age plane, which fully cover the observed cluster distribution and hence define a dynamical origin for the radius-age trend in the Magellanic Clouds. We discuss the implications of core expansion for various aspects of globular cluster research, as well as the possibility of observationally inferring the presence of a population of stellar-mass black holes in a cluster.
141 - A.D. Mackey 2007
We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant number of black holes are retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass segregated cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا